
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

MycoCloud

Improving QoS by managing elasticity of

services in decentralized clouds

Advisors: Prof. Elisabetta Di Nitto, Prof. Giuseppe Valetto

Co-Advisor: Dr. Daniel J. Dubois, Dr. Paul L. Snyder

Master thesis by: Donato Lucia

ID 767372

Academic Year 2012-2013

To my family and

to my friends.

Abstract

Tre le problematiche più attuali nel campo dell’ingegneria del software si an-

noverano sicuramente quelle legate alla crescente complessità nei sistemi infor-

matici distribuiti. Questo deriva dal constante aumento di utenti con “elevata

mobilità”, ovvero utenti che accedono e usufruiscono di infrastrutture e appli-

cazioni da diverse posizioni geografiche rendendo imprevedibile il dimensiona-

mento dei sistemi. In tali scenari risulta necessario che l’allocazione di risorse

computazionali e di memorizzazione sia dinamica e automatizzata, cos̀ı da

rendere i sistemi capaci di adattarsi a condizioni di carico non completamente

prevedibili.

L’emergente campo di ricerca dell’Autonomic Computing affronta queste

problematiche, analizzando efficienza, scalabilità e in generale elasticità in com-

plessi sistemi decentralizzati. Attraverso questi studi si cerca di formulare e

implementare protocolli e meccanismi automatici che siano in grado di so-

stituire le tradizionali architetture di rete (topologie) statiche e con gestione

centralizzata. Approcci innovativi in questo senso sono basati su tecniche di

“meta-design”, ovvero framework concettuali con la quale si cerca di definire e

progettare infrastrutture collaborative partendo dall’analisi di comportamenti

sociali e/o animali. Tra questi si annoverano sistemi naturali e biologici che

includono Amorphous Computing, Swarm intelligence e Cellular Automata.

Da questi modelli si osserva come si riesca a dar vita a sistemi che evolvono

in maniera autonoma applicando regole in locale senza avere una conoscenza

globale.

Lo scopo di questi studi è quello di dare flessibilità ai sistemi distributi,

ovvero renderli capaci di allocare/deallocare risorse computazionali in modo

autonomo e reattivo. Tale flessibilità, che è alla base del modello di utility-

computing, è anche definita come “elasticità”. Essa è evidentemente non otte-

nibile con sistemi statici e gestione centralizzata in quanto non sono in grado

di reagire velocemente ed efficientemente.

Questa flessibilità è in parte abilitata dal modello di risorse on-demand

delle infrastrutture di Cloud Computing. In tali infrastrutture viene garan-

tito bilanciamento del carico (load-balancing) tra le risorse e meccanismi di

iv

scale-up (assegnamento di ulteriori risorse) e scale-down (rimozione di risorse

inutilizzate) che adattano la capacità computazionale al carico di richieste in

input in modo automatico (auto-scaling).

Il modello proposto dalle instrastutture di Cloud Computing tuttavia pre-

senta delle limitazioni. Innanzitutto la quantità di risorse è tipicamente limita-

ta per capacità hardware o comunque da contratto dal Cloud provider; inoltre,

in base allo stato attuale del Cloud (connettività) e alle condizioni di mercato

(costi) un Cloud provider può non essere la scelta più conveniente in un certo

momento.

Queste limitazioni stanno spingendo la ricerca alla formulazione di modi

efficaci per sfruttare sistemi di Cloud che collaborano per fornire diversi servizi.

La capacità di federare Cloud providers differenti diventa particolarmente utile

quando piccole società vogliono offrire parte delle loro risorse al mercato Cloud,

ad un prezzo competitivo.

A seguito di queste analisi, questa tesi si pone come obbiettivo quello di

sperimentare soluzioni che permettano una completa decentralizzazione nella

gestione di Cloud decentralizzati e in generale di sistemi distribuiti su larga

scala. A tal fine vengono riformulate le soluzioni di bilanciamento del carico e

di assegnamento/rimozione di risorse computazionali in modo tale da renderle

decentralizzate e non affidate ai singoli Cloud providers. In particolare, queste

risorse vengono clusterizzate (raggruppate) in base al servizio offerto e saranno

in grado di cambiare il proprio servizio, spostandosi quindi da un cluster ad un

altro. Il cambio servizio, che sfrutta euristiche di posizionamento, ha lo scopo di

garantire auto-adattamento alle condizioni di carico dei servizi, massimizzando

cos̀ı le prestazioni del sistema (QoS).

v

Table of Contents

1 Introduction 1

1.1 Context . 1

1.2 Background . 3

1.3 Objectives . 5

1.4 Achieved Results . 6

1.5 Outline of the Thesis . 8

2 State of the art 9

2.1 Bio inspired super-peer overlays 9

2.2 Self-organized load-balancing . 15

2.3 Large-scale deployment . 21

2.4 P2P Simulators . 23

2.5 Considerations . 25

3 MycoCloud Approach 27

3.1 Overview . 27

3.2 Model . 28

3.3 Design . 30

3.3.1 Cluster Construction Rules 31

3.3.2 Load-balacing . 34

3.3.3 Service Elasticity . 36

3.4 Adaptation examples . 42

4 Live Distributed Experiments 47

4.1 New Deployment Tool . 47

4.2 Tool Description . 48

4.2.1 Model . 48

TABLE OF CONTENTS

4.2.2 How it works . 51

4.3 Deployment example with MycoCloud 52

5 MycoCloud Evaluation 55

5.1 Experimental setting . 55

5.2 Experiments . 56

5.2.1 Test Peaks . 57

5.2.2 Test Easy . 63

5.2.3 Test Constant . 65

5.3 Comparisons and discussion . 83

6 Conclusions and Future Works 85

viii

List of figures

1.1 Clustering example . 3

2.1 Illustration of the self-assembly mechanisms 12

2.2 Illustration of various types of phenotypic adaptation in a

programmable network growth model. 13

2.3 Mycelium growing . 14

2.4 DHT routing structure for load balancing 16

2.5 Autonomic service architecture 19

2.6 DEPAS solution architecture . 20

2.7 The Kompics architecture . 24

2.8 The ProtoPeer architecture . 25

3.1 Myconet protocol state transitions 32

3.2 Example of Clusterization . 34

3.3 Decentralized service network 35

3.4 Example of Cluster Safe Condition 37

3.5 Service change design: Class diagram 39

3.6 Service change example: Basic scenario 43

3.7 Service change example: Overlay scenario 44

3.8 Service change example: Overlay changing after service changes 45

3.9 Service change example: Discarded request scenario 46

4.1 Deployment tool design: LDE Model Class Diagram 50

5.1 Test Peaks - Load shape . 58

5.2 Test Peaks - No Adaption: Load per service 58

5.3 Test Peaks - Adaption: Load per service measured 59

5.4 Test Peaks - No Adaption: Queue length 59

LIST OF FIGURES

5.5 Test Peaks - Adaption: Queue length 60

5.6 Test Peaks - No Adaption: Response Time 60

5.7 Test Peaks - Adaption: Response Time 61

5.8 Test Peaks - No Adaption: Response Time Optimality 61

5.9 Test Peaks - Adaption: Response Time Optimality 62

5.10 Test Peaks - Adaption: Capacity for each service 62

5.11 Test Peaks - No Adaption: Capacity for each service 63

5.12 Test Peaks - No Adaption: Network Messages 63

5.13 Test Peaks - Adaption: Network Messages 64

5.14 Test Peaks - System at start . 64

5.15 Test Peaks - System evolution over the time 65

5.16 Test Easy - No Adaption: Load per service 66

5.17 Test Easy - Adaption: Load per service 66

5.18 Test Easy - No Adaption: Response Time 67

5.19 Test Easy - Adaption: Response Time 67

5.20 Test Easy - No Adaption: Response Time Optimality 68

5.21 Test Easy - Adaption: Response Time Optimality 68

5.22 Test Easy - No Adaption: Capacity 69

5.23 Test Easy - Adaption: Capacity 69

5.24 Test Easy - No Adaption: Network messages 70

5.25 Test Easy - Adaption: Network messages 70

5.26 Test Constant 1k No Adaptation - Load per service 71

5.27 Test Constant 1k Adaptation - Load per service 71

5.28 Test Constant 1k - No Adaption: Response Time 72

5.29 Test Constant 1k - Adaptation: Response Time 72

5.30 Test Constant 1k - No Adaption: Response Time Optimality . . 73

5.31 Test Constant 1k - Adaptation: Response Time Optimality . . . 73

5.32 Test Constant 1k - No Adaptation: Queue 74

5.33 Test Constant 1k - Adaptation: Queue 74

5.34 Test Constant 1k- Adaptation: Capacity per service 75

5.35 Test Constant 1k- Adaptation: Capacity per service 75

5.36 Test Constant 1k - Adaptation: Response Time, with higher

threshold . 76

5.37 Test Constant 1k - Adaptation: Response Time Optimality,

with higher threshold . 76

x

LIST OF FIGURES

5.38 Test Constant 1k - Adaptation: Capacity per service, with

higher threshold . 77

5.39 Test Constant 1k - No Adaptation: Network traffic 77

5.40 Test Constant 1k - Adaptation: Network traffic 78

5.41 Test Constant 1k - Adaptation: Network traffic, higher threshold 78

5.42 Test Constant 10k - Load per service 79

5.43 Test Constant 10k- Adaptation: Load per service 79

5.44 Test Constant 10k - No Adaptation: Response Time 80

5.45 Test Constant 10k - Adaptation: Response Time 80

5.46 Test Constant 10k - Adaptation: Response Time Optimality . . 81

5.47 Test Constant 10k- No Adaptation: Response Time Optimality 81

5.48 Test Constant 10k- Adaptation: Capacity per service 82

5.49 Test Constant 10k- No Adaptation: Capacity per service 82

xi

List of Algorithms

1 Service change request: Generation 38

2 Service change request: Dispatcher 40

3 Service change request: Forward protocol 40

4 Service change request: Immobile handler 41

5 Service change request: Basic handler 42

Capitolo 1

Introduction

1.1 Context

One of the today issues in software engineering is to find new effective ways

to deal intelligently with the increasing complexity of distributed computing

systems. An increasing number of users with greater mobility are constantly

requiring more sophisticated functionality from larger applications running on

faster architectures. Consequently, computer engineers are gradually leading

to rethink the traditional perspective on distributed systems design, repla-

cing systems with fixed topologies, central authorization or supervision with

systems highly decentralized and self-managed.

Different paradigms to handle such complex systems and solve large-scale

problems have been proposed. The original client/server model led to the

evolution of dedicated clusters, followed by grids, and then by large-scale

data centers. The last stage of virtualization comes from cloud computing

infrastructures that enable on-demand allocation of computational resources.

Cloud Computing model provides a first version of flexibility thanks its

auto-scaling mechanisms that adapt the system capacity according to the load

generated by service requests. This flexibility in the amount of resources pro-

vided is often called elasticity and is the basis of the utility computing model

[35, 9].

Regarding auto-scaling mechanisms, both the research community and the

main cloud providers have already developed auto-scaling toolkit [28, 2]. Ho-

wever, most research solutions are centralized and typically bound to the li-

Introduction

mitations of a specific cloud provider in terms of resource prices, availability,

reliability and connectivity. In fact the total amount of resources that can be

allocated to a single customer is usually limited by the contract and by the

total capacity of the Cloud provider. Moreover auto-scaling services may have

an additional cost. Another problem is that, depending on the current state of

the cloud infrastructure (i.e., connectivity) and on the market conditions (i.e.,

costs) a single cloud provider may not be the most convenient at a certain

moment.

These limitations are moving current research efforts in Cloud computing

to the study of efficient ways to exploit more than a single Cloud system for the

deployment of a service. The capability to federate different Cloud providers

becomes particularly useful when smaller companies want to offer part of their

resources for a competitive price in a cloud market. In a scenario like this we

would have several cloud computing systems with less capabilities, guarantees,

and stability than a single specialized cloud provider.

The extreme scale and dynamism however, call for robust and efficient

protocols capable to self-organize and self-repair the whole system in case of

a serious failure in one Cloud provider or in its connectivity. A crucial issue

comes also from the need to ensure an high QoS (Quality of service) in the

network respect to the requests execution. In this context important is the

effort provided by the load-balancer as well as the auto-scaling mechanisms,

which are in charge to make the system more flexible against events in the

network (e.g. peaks of load, churn).

So far load balancing approaches have been designed for networks with fixed

or dynamic topologies having a perfect knowledge of the whole network. They

therefore do not address the needs to have a decentralized algorithm where

each node is able to delegate exceeding jobs to others, without knowledge of

the whole network.

These limitations, whose resolution is one the objective of this work, are in

the case of load-balancer based on a not complete extension for every dynamic

characteristics of the networks, while in case of auto-scaling solutions are due

to the fact that they are still based on centralized algorithms. We want thus

design an algorithm that gives mechanisms for a decentralized auto-scaling

among the services, giving elasticity to the system.

Our system, denoted with the name MycoCloud, will be fully decentra-

2

1.2 Background

lized, self-organizing and self-adapting, thus reducing the human effort at

deployment time in reconfiguring the whole system in case of events in the

network (i.e., peaks load, churn). This thanks to the usage of autonomic

self-aggregation techniques [27] that rewire such highly dynamic systems in

clusters (Figure 1.1). Clusters, which are grouped with homogeneous nodes

having same characteristics will have a further property of elasticity. Nodes

“belonging” to a certain cluster will be autonomously able to make decisions

whether to ask for capacity to other clusters based on their capacity and on

the number of received requests. They will be able to change its own service

and “migrate” to another cluster, making the system more elastic and with an

improved QoS against load or churn events in the network.

Figura 1.1: Clustering example.

1.2 Background

The emerging field of Autonomic Computing is addressing the issues of effi-

ciency, scalability and in general of elasticity in complex decentralized systems

by formulating and deploying adaptive, self-configuring, and self-managing

protocols and mechanisms that relieve the persistent need for human-driven

management. While policies are defined by humans, their deployment, enfor-

cement, and dependency conflict resolution should all be handled by automatic

mechanisms to optimize system performances.

However, achieving this vision requires conceptual, physical and logistical

modifications to existing systems and protocols. A key issue that is significan-

tly impacting emerging networks and applications, which can be potentially

addressed by autonomic communication, is the absence of accurate knowledge

and control over topologies of large networks. Network topologies define the

3

Introduction

link relationships between the nodes in the network, and have a direct im-

pact [16] on scalability, routing, fault tolerance, security and performance of a

distributed system.

The management of such complex systems cannot be handled neither by

a central authority or a fixed communication topology. For this reason, the

research has post attention in the creation of highly-decentralized large-scale

distributed systems, which can be extremely large, scaling to millions of re-

sources (also called Peers). Innovative approaches come from “meta-designing”

models that provide to the system self-assembly, self-regulation and evolution.

These models come from nature and biological systems [13] including Amor-

phous Computing [5], Swarm Intelligence [30, 8], and Cellular Automata [40].

Amorphous Computing applies concepts from biology and evolution to develop

computer languages and decentralized evolving systems [26]. Swarm Intelli-

gence is inspired by social and behavioral theories in the animal and human

kingdom. For example, foraging, nest building, and burial activities of social

insects (ants, wasps, termites) follow local rules applied by each entity with

no knowledge of the whole. Similarly flocks of birds, schools of fish, herds of

mammals, follow local rules that lead to structures with emergent properties.

Biologically-inspired metaphors and models have been lately the subject

of active research [20], as they hold promise to enable properties, such as

resilience, emergent adaptation, and self-organization, that are desirable for

large-scale, distributed systems.

An interesting work called Mycoload [37] investigated an unstructured over-

lay network, in which nodes that host instances of many different service types

are self-organized into virtual clusters. Nodes “belonging” to a virtual cluster

do not need to be physically close, rather, they are logically interconnected.

They are able to efficiently balance the load generated by incoming requests

among themselves, while the overlay as a whole is responsible for routing tho-

se requests to the right virtual cluster. This work use a bio-inspired super-

peer-based overlay substrate called Myconet [34], which can automatically

re-configure its topology.

Mycoload thanks the properties provided by Myconet, deals effectively with

a number of dynamic dimensions, including the churn of nodes participating in

the decentralized service network, the variation in the number of service types

hosted by those nodes, the fluctuations of the traffic entering the network, and

4

1.3 Objectives

self-healing following highly disruptive network events.

However Mycoload does not deal with any auto-scaling mechanism, pay-

ing in elasticity with respect to a sudden increment of load. This instead is

considered in a recent approach called DEPAS [10], in which the authors dealt

effectively with the problem of decentralized auto-scaling to make the system

elastic with respect the load. They designed an algorithm able to perform

scaling actions selecting a random cloud provider in a cloud federation, do not

using any placement heuristic. In this way however, the selection may not be

the best one, since the total amount of resources that can be allocated to a

single customer is usually limited by the contract and by the total capacity of

the cloud provider.

1.3 Objectives

Given the limitations defined above, this thesis aims to design a decentra-

lized self-adaptive network with the main objective to improve the elasticity

among different services provided by Cloud infrastructures. We want reach a

complete decentralized adaptation giving to the system the self-* properties

needed. In particular we will on the services adaptation enabling a self-scaling

property in the system, thanks to which the services grouped in clusters will be

able to require/release resources (nodes) from/to other clusters. The algorithm

will use a probabilistic placement heuristic thanks to which the selection will

take into account at the cost of selecting one node.

To achieve this goal we propose MycoCloud approach: a three algorithm

layers system that tries to improve QoS in decentralized clouds by managing

elasticity of services. The architecture is composed by:

Bottom layer A bio-inspired super-peer-based overlay substrate, which can

automatically re-configure its topology.

Middle layer A Self-organized load-balancing algorithm for overlay-based

decentralized service networks, through which nodes are able to make

their queue lengths proportional to their computational capacity.

Top layer An algorithm that gives to the system an adaptive behavior against

increasing/decreasing incoming requests, using a precise placement heu-

5

Introduction

ristic. The nodes organized in clusters, will have the ability to ask for

further resources sending a service change request in the network.

Finally to validate MycoCloud we want use simulations and real experi-

ments deploying it on Cloud networks. To do this, we found the need to build

a deployment tool allowing us to deploy MycoCloud in real/virtual machines

(e.g., cloud VMs), since the state of the art does not offer something able

to do that. Moreover we want design and implement this tool in order to

deploy general P2P systems, in which there is the need to execute large-scale

experiments.

1.4 Achieved Results

In this thesis we have designed and built MycoCloud reaching a fully de-

centralized self-adaptive network. This system has shown how is able to react

and improve the performances against every type of event in the network. This

implementing a three algorithm layers system composed by an overlay mana-

ger, that build and self-repair the topology; a decentralized load-balancer and

auto-scaling mechanism giving to the system a further elasticity, in particular

during workloads peaks. We have seen:

(i) A good convergence rate (i.e., the amount of time that is needed to obtain

a satisfactory configuration) in the overlay construction and self-repairing

actions.

(ii) Good performances provided by the collaboration of the topology and

the load-balancing algorithms looking at metrics such as Response ti-

me, network traffic (message exchanged) and system load. They will be

discussed in the Chapter 5.

(iii) remarkable improvements provided by the service elasticity with respect

a system without adaptation. This has shown the validity of our solution.

To validate our approach we have executed several tests by running lar-

ge scale simulations (reaching 10 thousands of nodes). First we performed

different tests using a non-adaptive version on MycoCloud excluding the Top

6

1.4 Achieved Results

layer. This gave us an evaluation of the performances without the adapti-

ve algorithm. Then we integrated the adaptive algorithm showing improved

performances with respect the non-adaptive version. . Finally we reached a

good outcome in the development of the deployment tool for live distributed

experiments, denoted with the acronym LDE, which has proved to be useful

in every type of such large-scale experiments and for MycoCloud, as well. We

deployed MycoCloud on Amazon Cloud proving the validity of the tool, but for

time constraints we do not collected metrics comparable with the simulations.

7

Introduction

1.5 Outline of the Thesis

This thesis is organized as follows:

• Chapter 1 gives an overview of the context of the thesis.

• Chapter 2 discusses the state of the art, that is, what the research in this

field has reached until now.

• Chapter 3 shows design and tests of our approach to the problem of

elasticity in decentralized cloud infrastructures.

• In Chapter 4 there is the description of a new tool for deployment on

large-scale P2P real networks.

• Chapter 5 reports and discusses the final results.

Finally, Chapter 6, concludes this thesis and shows some possible future

extensions.

8

Capitolo 2

State of the art

In this chapter there is a discussion about some works provided by research

activities that are close or interesting for this work. In particular in the first

section there is an overview about valuable super-peer overlay networks that

try to solve the problem of self-organize a complex distributed system. In

the second are reported some approaches that try to improve the response

time in unstructured networks through decentralized load-balancing and/or

auto-scaling algorithms in highly-decentralized network, discussing the best

qualities and the weaknesses with respect our approach. The third section

discuss how has been addressed until now by other researchers the problem of

how to test such large-scale systems in real environments. Finally, in the last

section there is a comparison of different frameworks that help to test large

networks like that ones we are considering in this work.

2.1 Bio inspired super-peer overlays

Recently the research has post attention in P2P networks, that is in the

design of highly-decentralized, large-scale distributed systems, which can be

extremely large, scaling to millions of peers, also having members highly

unstable.

Most of the P2P applications deployed on the Internet were characteri-

zed by the absence of a specific mechanism for enforcing a particular overlay

topology. Recently, however, even popular file-sharing applications [15] have

started to consider more structured topologies, by introducing the concept of

super-peer. Topologies, in this way are organized through a two-level hierar-

State of the art

chy: nodes that are faster and/or more reliable than “normal” nodes take on

server-like responsibilities and provide services to a set of clients. The super-

peer paradigm allows decentralized networks to run more efficiently improving

the performance of the entire network [25, 23]. Super-peers may take on service

roles for other peers, such as indexing files, routing data, or forwarding sear-

ches. Designing effective super-peer-based overlay topologies for large-scale

P2P networks is not simple, as no global view of the network exists. Further,

such networks can be extremely dynamic since peers frequently join and leave

(whether by failure or deliberate disconnection).

In this context new ways to think about unstructured overlay networks

are emerging. They are inspired by nature and biological systems [13] include

Amorphous Computing [5], Swarm Intelligence [30, 8], and Cellular Automata

[40]. Amorphous Computing applies concepts from biology and evolution to

develop computer languages and decentralized evolving systems [26]. In cellu-

lar automata each computing cell is viewed as equivalent to an organic cell that

is guided by its environment in order to determine its next state. The cells

follow virtual chemical gradient and density trails to identify their position

and direction of evolution. Swarm Intelligence is inspired by social and beha-

vioral theories in the animal and human kingdom. For example, foraging, nest

building, and burial activities of social insects (ants, wasps, termites) follow

local rules applied by each entity with no knowledge of the whole. Similarly

flocks of birds, schools of fish, herds of mammals, follow local rules that lead

to structures with emergent properties.

Interesting models come from a so called “morphogenetic engineering” ap-

proach. A new discipline that works toward new computing principles using

neurons, ants and genes as models. Morphogenetic engineering’s purpose is to

abstracts the behavior of cells, termites and other natural agents into new prin-

ciples of heterogeneous, controllable self-assembly. Research in morphogenetic

engineering is positioned at the interface between the science and engineering of

complex systems. It covers the computational modelling of self-organization

phenomena and the design of decentralized and adaptive artificial systems

inspired by these phenomena.

In [29], the authors discuss how to reproduce complex morphogenesis by

investigating and combining its fundamental ingredients: self-assembly and

pattern formation under genetic regulation. These comes from the idea that

10

2.1 Bio inspired super-peer overlays

outside biological and social systems, natural pattern formation is essential-

ly “simple” and random, whereas complicated structures are the product of

human design. So far, the only self-organized (un-designed) and complex mor-

phologies that we know are biological organisms and some agent societies. The

authors argue that understanding natural emergence should help to design a

new generation of artificial complex systems by importing into our machi-

nes highly desirable properties that are still largely absent from traditional

engineering: decentralization, autonomy (self-organization, homeostasis) and

adaptation (learning, evolution). Future engineers would “step back” from

their creation and only set generic conditions for systems to self-assemble and

evolve, instead of building them directly.

This is the purpose of his work, that is to show how genetic-like regulation

at the agent level can be used to control an artificial process of complex self-

organization. The model he proposes is viewed from two different vantage

points:

(a) Pattern formation on moving cellular automata, in which the cells spatially

rearrange under the influence of their activity pattern,

(b) Collective motion in a heterogeneous swarm, in which the agents gradually

differentiate and modify their interactions according to their positions and

the regions they form by gradient propagation.

Through a precise interplay of genetic switches and chemical gradients in time

and space, an elaborate form is created without an explicit architectural plan or

design intervention. On an abstract level, this phenomenon can be described as

a combination of self-assembly and pattern formation under the control of non-

random genetic regulation stored inside each agent. Local morphogen gradients

generated by a fully decentralized, peer-to-peer signalling system (a form of

“gossiping”), provide positional information in input. This information can be

used in different way to build any type of structure. For example the Fig. 2.1

shown how nodes that carrying various pairs of attachment ports (X, X’) and

corresponding gradient values (x, x’) are driven to specific attachment locations

through links that are dynamically created and removed based on “ports” and

“gradients”. Node ports can be “free” (not linked to other ports from other

nodes) or “occupied” (linked), while free ports can be “open” (available for a

11

State of the art

Figura 2.1: Illustration of the self-assembly mechanisms of complex but precise network

topologies by “programmed attachment”. (Copyright c©2004-2011 Inderscience Enterprises

Limited.)

connection) or “closed” (disabled). New nodes that just arrived in the system’s

space, or nodes that are not yet connected, have both ports open and gradients

set to 0.

These studies are very interesting since they are giving new challenges in the

design of completely self-adapting networks (see Figure 2.2), able to maintain

a certain “shape” in front of different event in the network.

Biologically-inspired metaphors and models have been lately the subject of

active research, as they hold promise to enable properties, such as resilience,

emergent adaptation, and self-organization, that are desirable for large-scale,

distributed systems. A valuable example is an approach, that is realized not

only as a model, is a bio-inspired super-peer based overlay network that can

automatically re-configure its topology, called Myconet [34]. In Myconet, the

robustness and sophistication of natural hyphal structures inspires intercon-

nection strategies between peers and super-peers, the promotion of regular

peers to super-peers, and the incremental aggregation of regular peers around

super-peers.

It is based on models of fungal growth, and uses the concept of hyphae

(the root-like structures of some species of fungi. Figure 2.3) to guide the

self-organization of the network topology. Myconet uses a set of local rules

and a hierarchy of peer states that are loosely modeled on hyphal growth

dynamics. Peers may either be hyphal peers (i.e., super-peers that provide

additional services to other peers) or biomass peers (less-powerful peers that

rely on hyphal peers and their services when available). Hyphal peers switch

12

2.1 Bio inspired super-peer overlays

Figura 2.2: Illustration of various types of phenotypic adaptation in a programmable

network growth model. (a) Stereotyped development: a certain genotype (port routine

P) gives nodes a strong bias toward self-assembling into a certain shape, here a spider-

like formation made of one ring and six legs. (b) Developmental “polyphenism”: similar

to a plant, the same P could give rise to variants of the above shape modified by external

conditions from the environment, such as obstacles or attractors. (c) “Polymorphism”: slight

parametric variants of P may produce other structural variants, such as size of ring, number

of legs, or ring location. (d) “Speciation”: drastically different genomes create drastically

different structures although there is no real qualitative difference with c: it is only a matter

of degree and time scale of evolution.

between three further hierarchical protocol states: extending, branching, and

immobile.

Each of the states above has a different role in managing the topolo-

gy of the overlay. All peers begin as biomass, and follow a multi-step

promotion/demotion process to and from the various super-peer states:

• Biomass peers perform only minimal roles in management of the

topology.

• Extending hyphae act as attachment points, and continuously explore

the network looking for new or isolated biomass peers to connect to.

• Branching hyphae grow new cross-connections with other hyphal nodes;

they also regulate the number of extending hyphae in the network, at

times selecting large-capacity biomass peers for promotion to the ex-

tending state, and at other times targeting excess extending hyphae for

demotion.

13

State of the art

• Immobile hyphae similarly control the number of branching peers in the

network, and ensure the chosen level of cross-connectivity between hy-

phal peers remains stable; immobile peers are selected by the protocol

dynamics as being of the highest capacity (and, implicitly, reliability, as

those peers have remained in the network long enough to be promoted

to this state).

Figura 2.3: Mycelium growing

It also has rules that regulate the interactions between neighboring hyphal

peers; these rules, on the one hand, aim at transferring biomass peers towards

the higher-capacity hypal peers that can best service them, while, on the other

hand, ensure that hyphal peers that cannot efficiently reach their biomass

peers number or other super-peers number targets will become candidate for

demotion. It is important to notice that all Myconet rules operate locally.

Peers make decisions based on their individual neighborhood, that is, the set

of peers to which they maintain links.

The Myconet protocol effectively constructs and maintains a strongly in-

terconnected, decentralized super-peer overlay unlike other unstructured ap-

proaches, dynamically adjusting the interconnections between super-peers, in-

creasing efficiency and resiliency to the loss of peers. The Myconet overlay

is designed to dynamically maintain a configurable number of links between

super-peers to facilitate network tasks. These links exchange information used

for topology adjustment, maintain strong interconnections to increase robust-

ness in case of super-peer failure, and act as the communication substrate

for application-level protocols running on the overlay. For several protocol

14

2.2 Self-organized load-balancing

operations (bootstrapping and growing new inter-hyphal connections) random

non-neighbor nodes are selected, through the use of a gossip-based mechanism

that maintains a cache of known peers and the protocol states of those peers,

that is a simplified version of the Newscast protocol [18].

Myconet demonstrates that the fungal metaphor is powerful when applied

to peer-to-peer overlays and that it can be used to create a self-organizing

peer-to-peer overlay that provides advantages over other approaches in terms

of its robustness to failure.

All these self-organizing properties, as described in the next section, have

been found useful in order to achieve a self-organized load-balancing among

nodes.

2.2 Self-organized load-balancing

The literature concerning the problem of load-balancing is quite extensive

and includes solutions for a large variety of scenarios ranging from multipro-

cessor computers, telecommunication networks, content delivery networks, grid

environments and in general centralized and decentralized systems. Recently

the problem of load-balancing in decentralized service networks has gained

attention: in [32] Ranjan et al. propose a new software fabric to balance

service provisioning requests among a set of VMs deployed in a cloud environ-

ment using a DHT based self-organizing routing structure. The services build

upon the DHT routing structure (shown in Fig. 2.4) extends (both algorith-

mically and programmatically) the fundamental properties related to DHTs

including deterministic lookup, scalable routing, and decentralized network

management. Other works such as [14], provide some guarantees on the con-

vergence time of the network to a stable state. However, they only deal with

a fixed initial assignment of requests to each peer and no network dynamism

concern is taken into account (i.e., the topology is stable).

Currently, the increasing diffusion of ubiquitous and pervasive frameworks

living in extremely dynamic environments and experiment variations with di-

sruptive event has escalated the need for robust and adaptive load-balancing

techniques. In [31] the authors achieve a load-balancing behavior by modifying

the degree of each node proportionally to the available computational resources

at the node itself. The execution of a job within a node causes one of its links

15

State of the art

Figura 2.4: A pictorial representation of Pastry (DHT) overlay construction, multi-

dimensional data indexing, and routing: (1) a service hosted within a VM publishes a update

query; (2) Cloud peer 8 computes the index cell, C(x3,y3), to which the update query maps

by using mapping function IMap(query); (3) Next, distributed hashing function, DHash(x3,

y3), is applied on the cell’s coordinate values, which yields a overlay key, K14; (4) Cloud

peer 8 based on its routing table entry forwards the request to peer 12; (5) Similarly, peer

12 on the overlay forwards the request to Cloud peer 14; (6) a provisioning service submits

a service discovery query; (7) Cloud peer 2 computes the index cell, C(x1, y1), to which the

service discovery query maps; (8) DHash(x1, y1) is applied that yields an overlay key, K10;

(9) Cloud peer 2 based on its routing table entry forwards the mapping request to peer 12.

to be removed while its completion adds a new link toward a new node. Biased

random walks are used to find the best node that is going to execute the job,

but they do not consider the case of nodes with different processing capabilities

and the effects of churn, as we do in this work.

Another approach has been proposed by Li and Kameda [11]. They con-

sider a system with heterogeneous nodes and jobs, meaning that each node is

able to process all the jobs, but with a different rate for each job class. In

this case the load-balancing problem is described as an optimization problem

decomposed into simple rules to be run at node level in a decentralized way.

The problem of load-balancing has also been considered in other domains.

Examples are structured peer-to-peer networks to manage distributed hash

16

2.2 Self-organized load-balancing

tables. In this context, the objective is to balance the association of keys

to nodes according to nodes capacity. Even in this case, as we do, random

probing of candidate nodes for load-balancing is used as a robust technique

against churn.

All these approaches, however, rely on a structured peer-to-peer network

model, and do not address the possibility of change the topology. They do not

consider in fact churn scalability issues, which is, instead the aim of a recent

work called Mycoload [37]. In this work in which has been investigated an

extension of Myconet [34] in order to make it suitable to serve as the overlay

management system for their load balancing approach.

With the help of Myconet protocol, nodes that host instances of each of

many different types of services are able to self-organize into virtual clusters

of same-type nodes. Nodes in a virtual cluster do not need to be physically

close, rather, they are logically interconnected. They are able to efficiently

load-balance incoming requests among themselves, while the overlay as a who-

le is responsible for routing those requests to the right virtual cluster. On

top of that efficient topology, a self-organized load-balancing is applied to the

queued requests for the various services residing in a decentralized service net-

work. Moreover, as Myconet had originally been developed to manage peers

irrespective of service type, another extension to the protocol was to make it

aware of peer types. A peer may have at any given time both same-type and

different-type neighbors, but it can only performs load-balancing operations

with same-type ones.

Therefore different types of rules are applied when that peer manages its

links to same-type vs. different-type neighbors, to ensure the incremental

construction of neighborhoods in the overlay, in which one or more hyphal

peers aggregate and serve a number of biomass peers of the same type. Load-

balancing is performed between neighbors, however, in a previous work [18],

since all peers were considered homogeneous in their computing capabilities,

the goal of the algorithm was to balance the queues of service requests for

neighboring peers as uniformly as possible. In Mycoload, because of the hete-

rogeneous capacity of peers, the goal of load-balancing becomes making queue

lengths proportional to the capacity of each peer. Based on this principle, when

a load-balancing operation is performed, a peer pα selects a random same-type

hyphal neighbor pβ . If pα is a biomass peer, it will have only a single neighbor,

17

State of the art

a same-type hypha. If pα is a hyphal peer, it will only try to balance its queue

with other same-type hyphal peers; as biomass peers have only a single neigh-

bor, they will be the ones to initiate the load-balancing operations with their

parent. In this way, load-balancing operations tend to occur preferentially

between the more capable super-peers, which helps ensuring that jobs will be

balanced throughout the cluster. So pα and pβ compare their queue lengths

and “ideal” queue lengths are calculated by determining the total number of

jobs in both queues and dividing the jobs proportionally based on pα and pβ’s

capacities. If the queues are unbalanced, jobs are transferred from the queue

that is over its ideal length to the queue that is under that length.

In order to achieve this goal in an efficient way, the network (Myconet)

have to guarantee that nodes have in their neighborhood a good number of

other nodes offering the same kind of service, also in the presence of network

churn, which can occur due either to failures in the system or to nodes entering

and leaving the network as part of their normal operation. Mycoload dealt

effectively with a number of dynamic dimensions, including the churn of nodes

participating in the decentralized service network, the variation in the number

of service types hosted by those nodes, the fluctuations of the traffic entering

the network, and self-healing following highly disruptive network events.

In Mycoload work however we can find some limitations. The first one is,

even if it has a lot of good properties since is built on top a fully decentralized

re-configurable network able to self-distribute load among nodes (of same ty-

pe), it does not allow any scaling mechanism. In fact, if the load directed to

a certain service (cluster) goes over the total capacity offered, the system will

not be able to satisfy further requests. Another limitation, or better something

left, is that it has been evaluated using simulations implemented on top of the

Java-based PeerSim platform [19], that is cycle-based and lacks completely the

notion of time.

An interesting approach slightly different, but for some aspects comparable

with Mycoload comes from DEPAS [10], a decentralized probabilistic algorithm

for scaling services in a cloud computing environment. As Mycoload it is built

on top of an unstructured P2P network but it is focused in cloud environments.

In fact, it discusses about the importance of auto-scaling, so that a system is

able to scale when the (balanced) load increase. It points out that even if the

main cloud providers have already developed auto-scaling solutions they are

18

2.2 Self-organized load-balancing

centralized solutions and not suitable for managing large-scale systems, and

moreover they are bound to the limitations of a specific provider in terms of

availability, reliability and connectivity.

Figura 2.5: Autonomic service architecture

DEPAS tries to take advantage of a cloud federation proposing a cloud

independent solution that allows the auto-scaling over multiple cloud infra-

structures. The solution proposed by the authors (see Figure 2.6) is composed

of many autonomic services, each one is responsible for processing requests and,

at the same time, for running a process that makes decisions in a probabilistic

way, whether to self-destroy or replicate the autonomic service by performing

local monitoring activities.

All these tasks are enabled thanks to the sub-components that runs in each

autonomic service, whose architecture is shown in Fig. 2.5:

• The Communicator allows the autonomic service to communicate with

other autonomic services using overlay links.

• The Service Container instantiates the actual business service that is

able to process the requests coming from the clients.

• A Requests Queue is employed to dispatch the incoming requests to the

Service Container.

• The Load Balancer implements a decentralized load balancing algorithm

that optimizes the size of the queue.

• A gossip-based algorithm is run by the Overlay Manager to maintain the

links to the neighbors of the autonomic service.

19

State of the art

• The Registar redister or un-register autonomic services to an external

DNS.

• The Autonomic Manager, which is the component in charge of executing

the auto-scaling algorithm.

The authors tested two different load-balancing algorithms to support the

auto-scaling mechanism. The first is based on a DNS round-robin entry point

combined with a decentralized approach at autonomic service level. The Regi-

strar probabilistically decides to register to or un-register to an external DNS.

So that a certain number of autonomic services is register in the DNS, and

when an autonomic service receives a request, an admission function is used to

decide whether the request will be processed by the current autonomic service,

forwarded to a remote autonomic service, or rejected. The second one, which

has been also used in Mycoload, balance the loads of two autonomic services

exchanging their requests.

Figura 2.6: DEPAS solution architecture

Since the solution needs to operate also in presence of dynamism the sy-

stem overlay is maintained connected and with a target degree (defined as

the average number of neighbors per autonomic service). Even in situations

20

2.3 Large-scale deployment

in which the appearance/disappearance of autonomic services is frequent and

unpredictable the autonomic services are organized into an overlay network

in which each autonomic service knows a fixed number of other autonomic

services, called neighbors. The authors decided to support the overlay with

an overlay management protocol, which is an adapted version of the gossip

protocol developed by Jelasity et al. [24], because it was proven to be hi-

ghly scalable, highly reliable with respect to autonomic service failures, and

the operations of neighbor addition and removal required by the auto-scaling

algorithm can be done with minimum effort.

Finally, the Autonomic Manager periodically retrieves the neighborhood

load (average over the last time-frame) and if the load is less than the mi-

nimum load threshold then the possibility to remove the current autonomic

service is considered, otherwise if it is higher than the maximum load thre-

shold then the autonomic service tries to add new autonomic services. The

Autonomic Manager contains the list of the underlying cloud provider(s) and

the logic that is needed to choose among them. However the selection of the

destination provider for autonomic services replica is based on a random policy

not considering any placement heuristics.

2.3 Large-scale deployment

Simulation is nowadays most-widely used, since it leads to reproducible

results. However, the significance of the results is limited, because simulators

rely on a simplified model of reality. More complex validation approaches

based on emulation and execution on “real” large-scale testbeds (e.g., grids)

do not have this drawback. However, they leave the deployment at the user’s

charge, which is a major obstacle in practice.

Considering the large scale, involving thousands of autonomic services, in

order to evaluate DEPAS, the authors used a system developed on top of the

Protopeer toolkit [38], as well as done in Mycoload. However, the results are

limited to simulations and are not compared with large scale experiments on

real networks. Their experience is limited with 200 instances deployed on the

Amazon cloud, basically because the complexity of deploy an high number of

machines.

21

State of the art

Validating P2P systems at a large scale is currently a major challenge,

since it is extremely difficult. We can classify three different ways to test a

P2P system:

• Simulation: Are often executed on a single sequential machine and allow

one to define a model for a P2P system, and then study its behavior

through tests with different parameters. The main advantage of simula-

tion is the reproducibility of the results. However, the technical design

of the simulated prototype may be influenced by the functionality pro-

vided by the simulator to be used, which may result in deviations from

reality. Further validation by alternative techniques such as emulation

or experiments in real environments is still necessary.

• Emulation: Allows one to configure a distributed system in order to

reproduce the behavior of another distributed system. Tools like dum-

mynet [22], NIST Net [6], ModelNet [36] or Emulab [39] allow to configure

various characteristics of a network, such as the latency, the loss rate,

the number of hops between physical nodes, and sometimes the number

of physical nodes. This way, networks with various sizes and topologies

can be emulated. However, the heterogeneity of a real environment (in

terms of physical architecture, but also of software resources) can not

be faithfully reproduced. More importantly, deployment of P2P proto-

types is essentially left to the user: it is often overlooked, but it actually

remains a major limiting factor.

• Experiment: Is supposed to run on real networks, on real machines di-

stributed across the world, without any supporting infrastructure layer.

It can be seen as last deployment step, which stage the real value of the

systems. Even though experiments are not reproducible in general on

such platforms, this is a mandatory step in order to validate a prototy-

pe. This is even more difficult than in the case of emulation, because of

the much larger physical scale.

To sum up, actually deploying and controlling a P2P system over large-scale

platforms arises as a central challenge in conducting realistic P2P experiments.

Considering for instance also popular P2P software, like Gnutella or KaZaA:

workloads of these systems are not fully analyzed and modeled because the

22

2.4 P2P Simulators

behavior of such systems cannot be precisely reproduced and tested [21]. Re-

cently, different P2P systems (like CFS [12], PAST [4], Ivy [3] and OceanStore

[17]) based on smarter localization and routing schemes have been developed.

However, most of the experiments published for these systems exhibit results

obtained either by simulation, or by actual deployment on small testbeds,

typically consisting of less than a few tens of physical nodes [33]. Anyway

every approach is linked to the system/prototype, thus there is a crucial need

for a tool providing the ability to deploy P2P systems at a large scale, which

is independent from the framework.

2.4 P2P Simulators

As introduced, one of our goals is to deploy the application in real networks,

in order to achieve valuable results. To do this we need to run a live experiment

with the concept of time. So that we had the necessity to change the framework

previously used in Mycoload. This framework implemented on top of the Java-

based PeerSim platform [19] can be used according to two simulation models:

cycle-based, in which peers get the control after a fixed constant time step in

a sequential fashion, and event-based in which the cycle-based assumption is

removed and simulator components can be active at any time, exploiting full

concurrency. The authors in Mycoload decided to adopt the cycle-based model

in order to ensure the experiments could scale easily to large number of peers,

even if at the cost of loss of precision.

Through an analysis of the various possibilities, we found two frameworks

time-based that could fit our requirements for building and evaluating P2P

systems in simulation and distributed deployment on real network.

One is Kompics [7] whose model is shown in figure 2.7. It is a neat system,

but would have imposed too much friction to try to work with it, since it is

poorly documented. Furthermore is heavily over-engineered, and it requires a

lot of overhead. We went into the selection process thinking that Kompics is

the one that we would end up using, but it just was not a good fit.

So we looked at Protopeer [38], that is a simpler and efficient framework

which allows to run simulations of P2P networks over a time domain, using an

event-based paradigm ,thanks to the possibility to schedule events. It further-

23

State of the art

Figura 2.7: The Kompics architecture. The left figure shows the architecture of a Chord

process. The Chord protocol is implemented by the Chord component using Network, Timer,

and FailureDetector abstractions. The Network and Timer abstractions are provided by

the MinaNetwork [1] (which handles connection management and message serialization)

and JavaTimer components. The ChordMonitorClient periodically inspects the Chord status

(CS port) and sends it through the network to the ChordMonitorServer (top right). The

ChordWebApplication renders this status on a web page upon request from a web server

(which provides web browser access). On the right we have the component architectures of

the monitoring and bootstrap server.

more allows to run the system without changing the code in a real computer

network where each peer is instantiated in a different machine.

The system shown in Fiure 2.8 is composed of a set of peers that commu-

nicate with one another by passing messages. Each application defines its set

of messages and message handlers. Messages can be sent either over UDP or

TCP, and during the live run messages are serialized using a custom optimized

protocol that is considerably less verbose than the standard Java serialization.

An application typically also defines a set of timers and handlers for the ti-

mer expiration events, and the message passing logic and state of each of the

protocols executed after received a message is encapsulated in components

called peerlets. Peers are constructed by putting several peerlets together.

The peerlets, which can be removed or added at run-time, just as the applets

or servlets, have the familiar init-start-stop life-cycle. The peer provides the

execution context for all of the peerlet instances it contains and the peerlets

24

2.5 Considerations

Figura 2.8: The ProtoPeer architecture. The simplified time and networking APIs form

the waist of the ProtoPeer’s architecture. The application complexity grows from these APIs

up, while the simulation and live networking complexity grows from the APIs down.

can discover one another within that context and use one functionality of the

other.

Finally ProtoPeer provides a good measurement infrastructure helps to col-

lect all the metrics providing basic statistics on-the-fly: average, sum, variance

etc. Instrumentation is done by doing calls to the measurement API in the

appropriate places in the application code.

For all these considerations we found ProtoPeer extremely effective and

versatile respect to our needs.

2.5 Considerations

All the works exploited, which tries to improve the QoS of such complex

systems have pros and cons. The approach with a DHT based self-organizing

routing structure [14], deals just with a fixed initial assignment of requests

to each peer and no network dynamism concern is taken into account. In

[31], where is achieved a load-balancing behavior by modifying the degree of

each node proportionally to the available computational resources, they are

considering a structured peer-to-peer network model, and do not address the

possibility of change the topology. The same limitation is showed in [11],

where the authors do not considered churn scalability issues and furthermore

they do not consider the case of nodes with different processing capabilities

and the effects of churn. DEPAS [10] instead, has not the same limitations of

25

State of the art

others, but in the auto-scaling algorithm is used a random policy for choose

the destination provider for autonomic services replica not considering any

placement heuristics, which is instead the aim of this work.

26

Capitolo 3

MycoCloud Approach

3.1 Overview

This Chapter presents MycoCloud, a decentralized self-adaptive network

that aims at improving the QoS in Cloud infrastructures implementing diffe-

rent algorithm layers. In MycoCloud we implemented an augmented version

of Myconet with rules to support the clustering of same-type nodes in order

to make suitable to serve as the overlay management system for our adaptive

algorithm. Furthermore on top of that efficient self-organized topology we

used a decentralized load-balancing algorithm used in previous MycoLoad and

DEPAS approaches.

In MycoLoad the authors have proposed a self-organized load-balancing

algorithm and a topology reconfiguration mechanism for decentralized service

networks but without providing any scaling mechanism. Furthermore in their

work has not considered a real scenario in real networks (e.g., networks of

Clouds). Part of these limitations have been handled in DEPAS, in which

through a decentralized probabilistic auto-scaling algorithm integrated into a

P2P architecture allowed auto-scaling of services over multiple cloud infra-

structures. The problem of this solution in our advice is the selection of the

resource for the scale-up action, since it uses a random placement heuristic.

In MycoCloud we handled these limitations trying to reach a complete

decentralized adaptation giving to the system the self-* properties needed.

In particular we focused on the services adaptation enabling a self-scaling

property in the system, thanks to which the services grouped in clusters will be

MycoCloud Approach

able to require/release resources (nodes) from/to other clusters. The algorithm

will use a probabilistic placement heuristic thanks to which the selection will

take into account at the cost of selecting one node. This cost, which complete

explanation can be found in the subsection 3.2, refers to the load of over the

last time-frames. If this load is high the cost of stealing resources would be

higher compared one with lower load. This because the load over the history

represents an information saying that the load in the next time-frames will

be “probably” closer to the load over the last times-frames. In this way by

selecting a cluster with a low load we avoid the side effect of stealing resources

to the cluster that would be loaded in the next instants.

3.2 Model

Each node in the system will run an algorithm for deciding to change its

service type according to the requests that are being received. In particular

the algorithm will trigger a service change request if the local load goes

over a certain threshold. We exploited two threshold types. The first one

gives to the system a proactive behavior, since it tries to maintain the load

balanced not only among nodes of same service type, but also between different

services. The threshold is not constant but, given two nodes N1 and N2 and

their respectively load L1 and L2, it is calculated as:

Lt = |L2−L1|
2

The second threshold is a fixed value Lt between 0% and 100% making

the system reactive. Each Node responds (reacts) to external events, that is,

for every request received compares the threshold with its load, and takes an

action (asking for service change) if the latter is over the threshold.

It is important to underline that the local load of the Nodes is maintained

balanced with the load of other Nodes of the same service type by the load-

balancer. Using the proactive version the Nodes need to exchange several

“balancing” messages to calculate Lt and then, to not exceed it there would

be several service changes increasing network traffic. In fact, in addition to

the load-balancer algorithm, which maintains balanced the load of same type

Nodes, with such proactive behavior the system will try to balance also Nodes

of different services.

28

3.2 Model

Given these reasons we decided to use the reactive version. So when the

load La is over Lt the algorithm running in the Node (also called Asking Node

Na) sends a message directed to a neighbor Node (a node with which it has a

direct connection to) of different service Nb asking for capacity units:

C̆a = (La − Lt) ∗ Ca

A Node’s capacity (i.e., the number of service requests it can process within

a single time unit) is set according to a power law distribution of a given n

such that the probability to have a capacity Cn is:

P [Cn = x] = x−α

where 1 ≤ x ≤ Cmax. Nb will have Cb capacity units and if its remaining

capacity, calculated as:

Ĉb = Lt − Lb

is Ĉb ≥ 0 (so it is not overloaded) then:

1. If Cb > C̆a then Nb gives Cb units to Na. If Ĉb ≥ C̆a then with probability

P = Cb

C̆a
Nb gives Cb capacity units.

2. If Cb < C̆a then Nb gives Cb capacity units and generate a new service

change request asking for the residue capacity C̆new = C̆a − Cb.

Otherwise Nb forwards the request to another Node. In this way the service

change message continues to run until the request of capacity is satisfied, with

the possibility to be fragmented in more requests. To avoid too much message

traffic and that the request continues to be sent without being satisfied, the

request message has a Time To Live (TTL). A time to live is a value set when

the request starts and decremented at each hop in the network, when is 0,

the message is discarded. We considered also, the possibility to fragment the

service change requests from the start. In this way the Na generates many

messages, each one requesting C̆i, such that C̆ =
∑

i C̆i. However it had two

limitations: the first one due to the fact that an excessive fragmentation may

lead to a significant increase of the network traffic. The second because the

algorithm may result slower, since the requests may be satisfied by a single

Node at the first message and the fragmentation may be unnecessary.

29

MycoCloud Approach

Using the service elasticity, however, has a cost. We defined this cost as a

time for service change:

Tsc=To+Tu

where To is a time cost paid to reorganize the overlay network and Tu is

a time cost of unavailability of the processing capabilities of the Node for a

certain amount of time. This simulates the possibility to shutdown the old

service (e.g., the virtual machine) and start the new one.

Since the solution aims to improve the QoS of the system, the algorithm

needs to react quickly adapting the services capacities according at the increase

of the load. Chapter 5 will show how we reach this goal with significant

improvements considering different metrics. The principal ones are:

(i) The System Load, defined as average load among the different services.

It will show how the system is adapting itself reacting on increasing load

among different services.

(ii) The Response Time Optimality (RTO), defined as

RTO = OptimalResponseT ime
MeasuredResponseT ime

where ExperimentalResponseTime is the measured response time and Op-

timalResponseTime is the response time of an ideal system composed of a

single C capacity Node. RTO gives an idea of how the measured response

time is far from being equal to the optimal one of the ideal system.

(iii) The number of Exchanged Messages, which is important to understand

the network cost To.

3.3 Design

MycoCloud implements a three layers architecture:

1. At lowest layer there is superpeer-based overlay substrate that automati-

cally build and re-configure the topology. In subsection 3.3.1 is explained

how we exploit this functionality to build a different cluster for each service

type as well as the derived benefit for the adaptive algorithm.

30

3.3 Design

2. The middle layer, explained in subsection 3.3.2, implements a load-

balancing algorithm for heterogeneous and dynamic networks [27] used in

both in MycoLoad [37] and DEPAS [10] approaches.

3. The last layer consists in an adaptive algorithm, whose design is illustrated

in subsection 3.3.3.

In MycoCloud is implemented on top of Protopeer framework [38] since it

allows to build and simulate such large-scale P2P network. ProtoPeer provides

different features useful to build distributed networks, in which every resource

is a Peer, and every Peer provides the execution context for different com-

ponents it contains, called Peerlets. Peerlets can discover one another within

that context and use one functionality of the other. Every message passing

logic and state of each of the protocols executed after receiving a message is

encapsulated in a peerlet. The Peerlets, which can also be removed or added

at run-time, just as the applets or servlets, have the familiar init-start-stop

life-cycle.

3.3.1 Cluster Construction Rules

We exploit the Myconet’s overlay management rules that regulate the in-

teractions of same-service type vs. different-service type peers. These in brief,

are a set of promotion/demotion rules, which self-regulate the superpeer po-

pulation in comparison with the amount and capacity of biomass peers in the

network. Promotion and demotion are predicated on a few parameters: a

target number of connections each hyphal peer should have to biomass peers

(BS), which is proportional to the capacity of that hyphal peer; and a target

number of hyphal links it should “grow” towards other super-peers (CS), to

ensure the robustness of the overlay. CS is a customizable parameter of the

protocol itself. Myconet also has rules that regulate the interactions between

neighboring hyphal peers; these rules, on the one hand, aim at transferring

biomass peers towards the higher-capacity hypal peers that can best service

them, while, on the other hand, ensure that hyphal peers that cannot efficiently

reach their BS or CS targets will become candidate for demotion.

• Biomass Peers : All peers begin protocol execution as biomass. A discon-

nected biomass peer b will attempt to connect to an extending superpeer

31

MycoCloud Approach

Figura 3.1: Myconet protocol state transitions. Peers adaptively transition between re-

gular peers (biomass) and three different varieties of hyphal peers depending on changing

conditions.

it can find through the lower-level gossip protocol. However, it will only

select one of its same service type. If no suitable extending superpeer can

be located, b will promote itself to extending status. This rule ensures

that there are always extending hyphae of each type in the network,

since these self-selected extending peers must act as aggregation points

for isolated peers of their service type. If a biomass peer ever becomes

disconnected, it searches for a new extending hypha to connect to, as

during bootstrapping.

• Hyphal Peers - all states : Hyphal peers aggregate biomass peers of their

same service type up to a target level BS (proportional to their capacity);

to this purpose, hyphal peers in a higher protocol state will always try

to “pull” biomass from other neighboring hyphal peers of their type in

lower states, or in the same state but of lower capacity, through the

execution of absorption rules. Hyphal peers attempt to create and main-

tain a target number of links CS to other hyphae of their service type,

which is a parameter of the protocol. Another parameter is CO, that is

the number of links hyphal peers try to maintain to hyphae of different

service types. CO ensures that clusters do not become disconnected from

one another. Increasing the CS or CO parameters increases the number of

32

3.3 Design

cross-connections (and the size of each peer’s neighborhood views), while

adding overhead to the protocol. This will be discussed in Chapter 5.

– Extending Peers : Super-peers remain in the extending state until

they have reached their target number of biomass neighbors of the

same type BS , at which point they promote to branching status.

Extending peers also anchor themselves to the overlay with a single

link to either a branching or an immobile peer of any type. In

the event two extending peers of the same type become neighbors,

the lower-capacity peer will transfer all of its biomass peers to the

higher-capacity and demote itself to biomass status. This is an

absorption rule.

– Branching Peers : One primary function of these super-peers is to

grow new links to other super-peers, thus building robust cross-

connections for the overlay. Branching peers are those that have

aggregated their target number of same-type biomass peer (BS), but

have not yet reached their targets of CS and CO hyphal links to other

super-peers of the same type and different types, respectively. With

respect to same-type hyphal links, if a branching peer hb is under

the target number CS , it will search its neighborhood to determine

if any of its neighbors are attached to a suitable same-type hyphal

peer that is not already its own neighbor. With respect to different-

type hyphal links, if hb is under its target CO , it will randomly

select a peer from the gossip cache and grow a neighbor link to it.

The resulting peer might be of any type (including the same). A

branching peer also attempts to always have one extending peer

among its neighbors; if no such peer exists, it will pick its largest

capacity biomass child and promote it, obtaining an extending peer

of its same type. If a branching peer ever gets over its biomass

capacity, it will push excess biomass children to an attached same-

type superpeer. Once it has grown CS and CO hyphal links, a

branching peer will promote to immobile state.

– Immobile Peers : Once a peer has achieved immobile status, it will

attempt to maintain it through absorption, that is, by pulling bio-

mass from lower-state hyphae of its same type (possibly resulting

33

MycoCloud Approach

in their demotion). Similarly, it will try to grow new hyphal links

if some are lost, in order to maintain the target CS and CO . If

the immobile peer, instead, happens to have more than CS hyphal

links to same-type super-peers, or more than CO hyphal links to

different-type super-peers, it will randomly drop the excess links.

An immobile peer should be connected to either zero or one same-

type extending peers. In case it has multiple extending neighbors

hyphae, it will connect them together, thus triggering the absorp-

tion rule. If it has both branching and extending neighbors, it will

transfer the extending peers to become children of the branching

peers.

Figura 3.2: Example of Clusterization. (a) Left figure shows network during bootstrap-

ping, after 5 seconds. Clusters are beginning to form. (b) Right figure shows overlay

stabilized.

3.3.2 Load-balacing

Load-balancing is - as in MycoCloud and DEPAS - performed between

neighbors in a decentralized service network, an example is shown in Figu-

re 3.3. The goal of load-balancing is to make queue lengths proportional to

the capacity of each peer. Based on this principle, when a load-balancing

operation is performed, a peer pa selects a random same-type hyphal neighbor

pb. If pa is a biomass peer, it will have only a single neighbor, a same-type

34

3.3 Design

hypha. If pa is a hyphal peer, it will only try to balance its queue with other

same-type hyphal peers; as biomass peers have only a single neighbor, they

will be the ones to initiate the load-balancing operations with their parent.

This way, load-balancing operations tend to occur preferentially between the

more capable super-peers, which help ensuring that jobs will be balanced th-

roughout the cluster. pa and pb compare their queue lengths; “Ideal” queue

lengths are calculated by determining the total number of jobs in both queues

and dividing the jobs proportionally based on pa and pb’s capacities. If the

queues are unbalanced, jobs are transferred from the queue that is over its

ideal length to the queue that is under that length. Therefore the number of

requests moved from A to B (B to A) is calculated by T (A, B) (T (B, A))

using the following formula:

T (A,B) = −T (B,A) = |queueA|∗CB−|queueB |∗CA

CA+CB

Figura 3.3: Decentralized service network. Nodes, shown in the figure as circles, offer

different services (characterized in the figure by different colors), and are organized in an

overlay network highlighted in the figure by the arcs connecting the nodes. For an efficient

execution of service requests, nodes must redirect the requests exceeding their processing

capabilities to other nodes able to handle them.

In this way, each cluster keeps the load among its nodes balanced. This

means that a service change request will be issued when the service is really

overloaded, not just because a single node. Another benefit exploited by the

elasticity algorithm is that when a service change request is issued in the

optimal case, that is a perfect balanced cluster, it will explore with one message

the load of all the nodes of one cluster. Ideally explore the whole network with

n messages where n is the number of clusters (services). In this way the choice

for the less loaded service in the network is fast and effective.

35

MycoCloud Approach

3.3.3 Service Elasticity

Since the Myconet rules, described in subsection 3.3.1, one of the first

concerning in the design of the service elasticity algorithm was whether enable

or not the service change even for super-nodes. This consideration was due to

the fact that super-peers are important to maintain the overlay and thus the

robustness of the network.

This process led us to consider to makes “changeable” just the Biomass

Nodes, since they act a marginal role in the overlay construction. Thus nodes

in state Immobile, Branching or Extending would be able to change service

only after the demotion rules bringing them to a Biomass state. If this way

however, since Biomass nodes are that ones with lower capacity, a cluster may

became deprived of a lot of Biomass keeping just nodes with high capacity.

While a cluster that is receiving just Biomass will have few “big” nodes and a

lot of nodes with low capacity. This situation bring to have two main problems:

1. The overlay lose in convergence time and effective in both the clusters since

each cluster needs at the same time: nodes with high capacity promoting

to super-nodes states and low capacity nodes becoming Biomass.

2. Realising always nodes with less capacity would means to give more nodes

to satisfy a service change request. While giving nodes with higher capacity

reduces the number of changes as well as the convergence time.

These considerations led us to exclude just nodes in Immobile state from

the service changing, since they are the most stable. This is shown as the

most efficient solution, since at the same time, keeps a strong overlay and

improve the algorithm effectiveness since nodes with different capacity are

able to change service.

Another important consideration is the introduction of a constraint on the

resources that a cluster can releases. This constraint consists into not depriving

a cluster of all its nodes, that is holding at least one. This is needed because

otherwise the service would be eliminated from the network. An example

of the constraint application, code-named cluster safe condition, is shown in

Fig. 3.4. The check is made on the number of neighbors, that is: if a node has

no neighbors of the same type it cannot change, since this means that it is the

last node of the cluster.

36

3.3 Design

Figura 3.4: Example of Cluster Safe Condition. (a) Left figure shows Clusters before

service changes. (b) Right figure shows how two services take all resources of a third service,

which maintains the last node.

After these analysis we defined our algorithm as composed of different

Components implementing different behaviors. Every Component is a Peerlet

and can act as Generator, Forwarder or Executor. (Note: SCR is the acronym

of Service Change Request)

SCR Generator Running in every node (see algorithm 1). This component

checks the local load for every incoming request and decides whether

issue a service change request.

SCR Dispatcher Running in every node (see algorithm 2). It is in charge to

receive the service change requests taking one of the following actions:

(i) To forward the request to another node;

(ii) To handle the request locally.

SCR Immobile handler Running in nodes in Immobile state (see algori-

thm 4). Act as a smart Forwarder, in fact a node in this state cannot

change its service.

SCR Basic handler Running in nodes in the other states, that is Branching,

Extending or Biomass (see algorithm 5). Is the component that decides

if execute the change service or not.

37

MycoCloud Approach

An important assumption is that nodes of a given type are aware of the

remaining capacity Ĉ of neighbor nodes of different types (this information is

regularly diffused in the node’s neighborhood). We will say that one Node is

less loaded with respect to others when its remaining capacity Ĉ ≥ Ĉi.

The figure. 3.5 at page 39 shows the class diagram model, in which there

is:

The SCRGenerator that checks the local load for every incoming requests.

If the load is over the threshold Lt it asks to the NeighborServiceManager for

a lower loaded neighbor with different service. The NeighborServiceManager

is the peerlet in charge to keep the information about all the neighbors. The

algorithm 1 shows the possible scenario in this situation:

• If the node has in its neighborhood one or more nodes with different

service having Ĉ > 0 (not overloaded), the SCR is sent to a random one

of them.

• In case the node has no neighbor of different service or every of them

is overloaded (Ĉ ≤ 0), the SCR is sent to a random super-node. This

situation is typical for Biomass nodes since they have just one link with

a super-node of the same service. In this way thus, the SCR can reach

other clusters. In fact, as explained in the previous section 3.3.1 super-

nodes are the nodes in charge to maintain overlay links connecting all

the clusters.

Algorithm 1 Service change request: Generation
1: if L>Lt then

2: Cr ← (L− Lt) ∗ C
3: Nl ← getLessLoadedNeighborDifferentServiceType()

4: if Nl == null then

5: Nl ← getRandomSuperNode()

6: end if

7: sendServiceChangeMessage(Nl, Cr, serviceType)

8: end if

38

3.3 Design

Figura 3.5: Service change design: Class Diagram

39

MycoCloud Approach

The SCRDispatcher component serves like a proxy (see Algorithm 2): for

every incoming SCR it checks if the node’s service is different with respect to

that one to change. This check is needed because can occur that a SCR has

not been yet able to go outside its own cluster.

• If the SCR is in a different cluster, SCRDispatcher delegates the handling

of the request to either the SCRBasicHandler or the SCRImmobileHand-

ler according to the actual state of the node.

• If the SCR is still in its own cluster, the SCRDispatcher forwards the

SCR (See algorithm 3).

Algorithm 2 Service change request: Dispatcher
1: message is the Service Change Request

2: if message.serviceTypeToChange! = this.serviceType then

3: if this.state == Immobile then

4: //See SCRImmobile Algorithm 4

5: immobileProtocolPeerlet.handleServiceChangeRequest(message)

6: else

7: //See SCRBasic Algorithm 5

8: basicProtocolPeerlet.handleServiceChangeRequest(message)

9: end if

10: else

11: //See Forward protocol Algorithm 3

12: forwardRequest(message)

13: end if

The forwarding function (algorithm 3) checks first for a less loaded neighbor

with different service with respect to the SCR. If the node has no neighbors

with different service, the SCR is sent to a random super-node.

Algorithm 3 Service change request: Forward protocol
1: message is the Service Change Request passed as argument

2: if message.isNotExpiredTTL() then

3: Nl ← getLessLoadedNeighborOfDifferentType(message.serviceType)

4: if Nl == null then

5: Nl ← getRandomSuperNode()

6: end if

7: sendMessage(Nl,message)

8: end if

The SCRImmobileHandler, whose algorithm is shown in 4, implements the

most important role for the placement heuristic since it has to decide whether

to solve the SCR in the actual cluster or to forward it to another one.

40

3.3 Design

• The Node, or better the super-node, first explores its overlay links looking

for a less loaded node with different service with respect to the SCR. In

this case forward the SCR.

• If the condition is unsatisfied, it sends the SCR to one of its Biomass. The

selected will be a random Well-Fitting Biomass. A Well-fitting means

picking up a Node in a set of Biomass not overloaded (with remaining

capacity Ĉ > 0) having capacity units C enough to satisfy the request

(C ≥ Ĉ). If this set is empty, a random one not overloaded (Ĉ > 0) will

be selected.

We exploited also a Best-Fitting Biomass selection. This would be a Bio-

mass (not overloaded) having capacity C as close as possible to the requested

capacity C̆. The thought led us to consider this selection was to try to reach

a further optimization on the placement heuristic, that is deprive the service

only for the requested capacity.

We decided to not adopt this version we noticed that especially in smaller

network the selection in most cases falls often in the same Biomass having

lower capacity. This causes to have SCR sent to Biomass having recently

changed their service, not giving them enough time to settle in the new cluster.

Furthermore when a service asks for capacity very likely it needs a little more

capacity then the one it is requesting since the load would be the same in the

entire cluster because the load-balancer. This would lead to have more service

change requests and delay in the adaptation.

Algorithm 4 Service change request: Immobile handler
1: message is the Service Change Request message

2: Nl ← getLessLoadedNeighbor(message.service)

3: if Nl.load<this.load then

4: sendMessage(Nl,message)

5: else

6: Nfit ← getRandomWellF ittingBiomass()

7: if Nfit == null then

8: Nwfit ← getRandomBiomass()

9: end if

10: sendMessage(Nfit,message)

11: end if

Finally the SCRBasicHandler, whose logic is shown in Algorithm 5, is

executed when a node is in state Branching, Extending or Biomass. It is in

41

MycoCloud Approach

charge to perform the service change, if the cluster safe condition is satisfied.

Furthermore it checks if its capacity is enough to satisfy the SCR. If this is

not the case it sends a new SCR to a random neighbor having its same service

type, asking for C̆new capacity units.

Algorithm 5 Service change request: Basic handler
1: Cr ← (L− Lt) ∗ C
2: if clusterSafeCondition then

3: changeService(newService)

4: if Cr<Ca then

5: // Send residue capacity request to a neighbor of same service type

6: Canew ← Ca − C
7: Nr = getRandomSameTypeNeighbor()

8: sendServiceChangeRequest(Nr, serviceType, Canew)

9: end if

10: else

11: // forward message to a random neighbor

12: Nr = getRandomSameTypeNeighbor()

13: sendMessage(Nr,message)

14: end if

3.4 Adaptation examples

In this section are shown few simple examples of possible scenarios of the

adaptive protocol. They are considered indicative to give a better understand

of the algorithm.

Figure 3.6 shows a scenario in which a sequence of actions conclude in a

service change. The actions are in order:

1: Biomass node (1) that is over-threshold (L1>Lt) and its SCRGenerator

peerlet issue a SCR asking for capacity C̆1 = (L1 − Lt) ∗C1. Node 1 has no

neighbor of different type, so the SCR is sent to its super-node (2).

2: The SCRDispatcher in Node 2 realizes that the SCR comes from its cluster

and looks for the less loaded neighbor having different services with respect

to SCR. This node is 3, which is in this simple case the only one neighbor

with different service. Node 3 has Ĉ > 0 so it is not overloaded and receive

the SCR.

3: The SCRDispatcher of the node 3 realizes that the SCR comes from a

different service so delegate the handle of it to the SCRImmobileHandler.

42

3.4 Adaptation examples

Figura 3.6: Service change example: Basic scenario

The SCRImmobileHandler looks for less loaded neighbors, but in this case

it is the less loaded with respect to its neighbors 5,6 and 7 (Ĉ3 > Ĉi).

Thus SCRImmobileHandler in the node 3 looks for a random well-fitting

Biomass, which in this case is the node 4, and sends the SCR to it.

4: The SCRDispatcher of the node 4 check the service type and realizes that

the SCR comes from a different service so delegate the handle of it to the

SCRBasicHandler Node 4 execute the service change and moves from the

green cluster to the blue one. Before this, it checks if the capacity request

is satisfied. In this case it is C ≥ C̆1, no further action are performed.

Figure 3.7 shows a second scenario in which more actions are needed to

conclude in a service change. The actions are in order:

1: Biomass node (1) that is over-threshold (L1>Lt) and its SCRGenerator

peerlet issue a SCR asking for capacity C̆1 = (L1 − Lt) ∗C1. Node 1 has no

neighbor of different type, so the SCR is sent to its super-node (2).

2: The SCRDispatcher in Node 2 realizes that the SCR comes from its cluster

and looks for the less loaded neighbor having different services with respect

to SCR. The node 3, however has Ĉ ≤ 0 so it is overloaded too. The SCR

is sent to a random super-node, in this case 8.

43

MycoCloud Approach

Figura 3.7: Service change example: Overlay scenario

3: The SCRDispatcher in the node 8 realizes that the SCR comes from the

same service and looks for its less loaded neighbor with different service. In

this case is the node 6, which receives the SCR.

4: The SCRDispatcher of the node 6 check the service type and realizes that

the SCR comes from a different service so delegate the handle of it to

the SCRImmobileHandler. The SCRImmobileHandler looks for less loaded

neighbors, but in this case it is the less loaded with respect to its neighbors

10,11,5 and 3 (Ĉ6 > Ĉi). Thus SCRImmobileHandler in the node 6 looks

for a random well-fitting Biomass, which in this case is the node 7, and send

the SCR to it.

5: The SCRDispatcher of the node 7 check the service type and realizes that

the SCR comes from a different service so delegate the handle of it to the

SCRBasicHandler. Node 7 execute the service change and moves from the

violet cluster to the blue one. Before this, it checks if the capacity request is

satisfied. In this case it is not (C < C̆1), so the SCRBasicHandler generate

a SCRnew asking for the remaining capacity C̆new = C7 − C̆1. This new

request is sent to a random same service type neighbor, which is in this

case node 6.

6: Node 6 in the meanwhile has lost a Biomass (7) and it has gone through

44

3.4 Adaptation examples

Figura 3.8: Service change example: (i) Left figure shows the changing after one service

change. The node 7 goes to the blue cluster and the Immobile node 6 downgrade to the

Branching state. (ii) Left figure shows the changing after one service change. The node 9

goes to the blue cluster and the Branching node 6 downgrade to Extending state.

the Myconet demotion rules, leading it to the lower state of Branching.

Figure 3.8 shows the topology changing. Node 6 thus, will be able to chan-

ge now. The SCRDispatcher of the node 6 check the service type and

realizes that the SCR comes from a different service so delegate the handle

of it to the SCRBasicHandler. The SCRBasicHandler looks for less loaded

neighbors.That one, in this case is node 9. Thus SCRBasicHandler in the

node 6 send the SCR to node 9.

7: The SCRDispatcher of the node 9 check the service type and realizes that

the SCR comes from a different service so delegate the handle of it to the

SCRBasicHandler. Node 7 execute the service change and moves from the

violet cluster to the blue one. Before this, it checks if the capacity request

is satisfied. In this case it is C ≥ C̆1, no further action are performed. Note

that after this change node 6 loses another Biomass, so it downgrade again

to Extending. Figure 3.8 shows the topology changing.

Finally figure 3.9 shows a third scenario in which a SCR is not able to go

outside the cluster and it is discarded because TTL. The actions are in order:

1: Biomass node (1) that is over-threshold (L1>Lt) and its SCRGenerator

peerlet issue a SCR. Node 1 has no neighbor of different type, so the SCR

is sent to its super-node (2).

2: The SCRDispatcher in Node 2 realizes that the SCR comes from its cluster

and looks for the less loaded neighbor having different services with respect

45

MycoCloud Approach

Figura 3.9: Service change example: Discarded request scenario

to SCR. The node 3, however has Ĉ ≤ 0 so it is overloaded and the SCR is

sent to a random super-node (4).

3: The SCRDispatcher in Node 4 realizes that the SCR comes from its cluster

and looks for the less loaded neighbor having different services with respect

to SCR. The node 5, however has Ĉ ≤ 0 so it is overloaded and the SCR is

sent to a random super-node that can be 2 or 6. Let’s assume the chosen

one is 6.

4: The SCRDispatcher in Node 6 realizes that the SCR comes from its cluster

and looks for the less loaded neighbor having different services with respect

to SCR. The node 7, however has Ĉ ≤ 0 so it is overloaded and the SCR is

sent to a random super-node (4).

5: The SCR continues to be bounced between the super-nodes 2-4-6 and finally

discarded after the time to live (TTL) is expired.

46

Capitolo 4

Live Distributed Experiments

Simulation is nowadays most-widely used, since it leads to reproducible

results. However, the significance of these results is limited, because simulators

rely on a simplified model of reality. More complex validation approaches based

on emulation and execution on “real” large-scale testbeds (e.g., grids) do not

have this drawback. However, they leave the deployment at the user’s charge,

which is a major obstacle in practice.

4.1 New Deployment Tool

We intend to develop this tool (named LDE from the acronym of Live

Distributed Experiments), in order to use it for the validation of MycoCloud,

but trying to make it as general as possible so that it can be easily utilized in

other P2P environments.

We state here four macro requirements which should be observed by a

deployment and control tool to successfully support general large-scale P2P

experiments. The final goal of this tool will be to deploy, configure, control

and analyze large-scale distributed experiments on a federation of clusters on

different cloud providers from a single control point.

The tool shall:

• Requirement 1 : Provide the ability to easily deploy on cloud machines

as well as normal ones in clusters. Therefore, the tool should support

various type of access (password, access key, etc..).

Live Distributed Experiments

• Requirement 2 : Allow designers of P2P prototypes to trace the behavior

of their system. Therefore, the tool should allow to retrieve the outputs

of each peer, such as log files as well as result files, for off-line analysis.

• Requirement 3 : Provide the ability to efficiently deploy peers on a large

number of physical nodes. For instance, a multi-deployment on single

physical node strategy may be useful when testing with a huge number

of nodes in clouds providers, since the have a utilization cost.

• Requirement 4 : Provide the ability to synchronize peers for the run.

Indeed, a peer should have the possibility to wait for other peers that

maybe, are reaching a specific state before going through the next step

of a test.

4.2 Tool Description

With the idea to develop a tool that gives us the possibility to deploy our

prototype, we wanted to design something that could be usable also for other

P2P experiments as well as ours. Thus, we wanted to make the tool as general

as possible, and not dependent on specific prototype. In this way the tool

is not aware of the framework, the simulator, and the protocols used. The

purpose is to deploy and run every node in all the available machines, and to

help the retrieval of possible outputs.

Having this in mind we designed a multi-thread command-line tool that

execute a parallel deployment among every node.

4.2.1 Model

To reach the goal of generality the proposed tool implements a model con-

taining different components (see Figure 4.1). Each component is designed as

an abstraction of the possible entities involved in every deployment:

• An Host is an abstraction of the machine in which to deploy the appli-

cation. The machine can be either a Virtual machine or real machine.

Each Host maintains all the information needed to communicate with the

machine. Address, Port and Authentication information (e.g., username,

password, public key)

48

4.2 Tool Description

• A Node indicates a runnable instance to upload and execute in every

Host. The relation Node-Host is many-to-one. This means that in one

Host can be deployed more than one Node.

• The HostManager is the Component in charge to keep all the infor-

mation about the Hosts and the Nodes. This information is specified in

a configuration file. An example is shown in (add Fig. or section)

• An Executor is independent and executed in concurrency with respect

to the others. It is actually a single thread and is able to perform every

task needed during the deployment phases.

• The Controller of the experiment is in charge to perform all the actions

thanks to different Executors. (The relation is one-to-many).

• A Connection , in particular an SSH connection, is an opened channel

between the controller machine (where LDE is executed) and the Host.

This way, there will be several connections, one per Host.

• An LDEFile represents any file involved in the deployment phase. The-

se files, whose meaning will be explained ahead, can be (i) configurations

files of the Nodes, (ii) output files generated by the Nodes, or (iii) files

handled by LDE.

49

Live Distributed Experiments

Figura 4.1: Deployment tool design. LDE Model Class Diagram

50

4.2 Tool Description

4.2.2 How it works

To perform a deployment with LDE, first of all is needed provide to it all

the information for the deployment, that is the Host and Nodes information

and properties for LDE. This information as said are located in the two main

configuration files. After this is possible run LDE choosing among two moda-

lity: normal and interactive. The former is the standard one, it makes

sequentially all the deployment steps described below, to achieve a complete

experiment. The latter, instead, allows to make every one manually. This is

enabled for debugging purposes, since we think it can be useful at the beginning

phases have a way to make all the steps manually.

Here are listed all the steps sequentially executed by the Executors :

1. Authentication: LDE needs to open ssh connections and, furthermo-

re, it needs to deploy to several types of Host, which can be both a real

machine or a Virtual machine, running on local or remote private cluster

rather then on public clouds. So it provides an authentication mecha-

nism, which provides the possibility to open a Connection through one

Host using user-name and/or password and/or public-key.

2. Deploy: Perform the upload of the software component (Node). Before

that step are executed two checks:

(a) Path check: As said, every Node needs a directory path on the

remote Host ’s file system. So in this step the existence of the path

is checked. If it is not present the Executor will creates it. Note

that if is not specified any path will be considered the remote OS

default path ($home).

(b) Hash check: if the software is an updated version it will be uploa-

ded, otherwise not. This is most important for a performance point

of view. In fact, avoiding not necessary uploads there is an huge save

of time. This check is performed comparing the hash of the Com-

ponent (Node, LDEFile) already uploaded and the new Component

to upload.

3. Run: Once the deployment is completed, a different Executor for each

Node will send a run command. The run command can be sent at the

51

Live Distributed Experiments

same time to every node (since by different threads) or with a given

priority. Priority means that the Nodes if needed can be started before

of others. The priority is a configurable value from 0 to 2, where 0 is

the maximum priority, 2 the lowest. This has proven to be useful in

situations in which a given protocol needs that some Nodes start before

others.

4. Retrieve results: At the end of the experiment, whose duration should

be indicated in a configuration file. LDE checks if some output files are

generated. If so they will be retrieved. Note: Since the output files

have different names and extensions in different application, and also

because it can be useful download more than one file per Node there is

a configurable parameter in which it is possible specify the pattern (a

regular expression).

The steps listed above describes the basic behaviour, which could be seen

in our advice, as a common way to deploy a P2P experiment, composed by

software Components that need to be uploaded, edited and executed on local

or remote distributed machines.

LDE provides other (optional) features, which can be useful in some other

situations. An important one is the possibility to merge some configuration files

(LDEFile) in the remote Component (e.g., jar) in the Host. This means that if

the Component (Node) is already uploaded by previous experiments, and you

want execute other experiments changing just some parameter of the Nodes,

LDE provides an upload of just these files merging them in the Component

in the Host. This happens at the deploy step through the hash check action,

in which the Executor will notice that are changed the configuration files but

not the Node. This can be very effective in situation like these, in which the

experiment involves hundreds or even thousands of Nodes.

4.3 Deployment example with MycoCloud

The design and the use of LDE is to allow deployment for any type of

large-scale experiments, with the possibility to customize, that is, add or edit

the default features. However the first objective was to allow us to deploy

52

4.3 Deployment example with MycoCloud

MycoCloud in real networks (Cloud networks, in particular) and to achieve

this objective we added to LDE one function useful for this scope.

This feature enables dynamically edits of Nodes configuration files at de-

ployment time, that is between the steps 1 and 2 (see subsection 4.2.2). This

function helped us to achieve three important facilities in the deployment of

MycoCloud.

• The first one is an automatic port number assignment to the nodes.

These port numbers are randomly generated given a port range specified

in LDE. In this way given the Cloud firewalls rules we could give to LDE

a specific range - previously enabled on the firewalls - from which the

ports are picked up and assigned to every node.

• The second instead use the Nodes id generated by LDE, assigning them to

every (ProtoPeer) Node. These id, which will correspond to a ProtoPeer

index, are placed into a specific Node configuration file. ProtoPeer in

fact use a concept of index that is basically an id, but every node needs

to know in advance which is its own one.

• The last is to “say” to every ProtoPeer node its own assigned Address.

Within this action is also indicate at every Node which is the Address

of the Node with (assigned) index 0 (also called Node Zero). The need

to indicate which is the Node Zero to the other nodes is due to the fact

that the Node Zero is the entry point for the network bootstrapping. In

ProtoPeer in fact, a small number of Nodes is in charge to contact the

Node Zero to start the experiment.

Node zero furthermore needs to start before the other nodes. For this

reason we implemented the feature, described in the subsection 4.2.2, which

gives run priorities to the Nodes.

With the “basic” LDE described before and a “smart” use of functionality

already provided we have been able to deploy and execute MycoCloud in cloud

providers.

53

Capitolo 5

MycoCloud Evaluation

This chapter gives a detailed description of the experiments developed to

evaluate the proposed approach. In the first section are described the expe-

rimental parameters. The second section discusses how the experiments have

been set up and the metrics we extracted. Finally, we describe the scenarios

chosen to evaluate MycoCloud and the results obtained.

5.1 Experimental setting

The parameter space of systems involving thousand of peers can be very

large, and careful selection is of utmost importance in order to create repre-

sentative experiments for the most common scenarios. Table 5.1 lists some

parameters that are specific to the MycoCloud protocol and that have been

fixed after some experimental trials and sensitivity analyses. For the expe-

riments discussed has been used values of CS = 5 for the target number of

Symbol Description Value

CS Target number of peers of the same type 5

CO Target number of peers of different type 3

MNperiod Activation period Myconet protocol 0.5

MNperiod Activation period load-balancing protocol 0.3

Cmax Maximum capacity per node 60

µ Average service execution time 1

Tabella 5.1: Fixed experiment parameters

MycoCloud Evaluation

same-type hyphal links (the Myconet default) and CO = 3 for the target num-

ber of different-type hyphal links, although we also tested the protocol with

values of 2 ≤ CS ≤ 6 and 2 ≤ CO ≤ 6. The sensitivity of the network to

values of CS and CO lower than the default is limited to possible churn of

the network increase somewhat, but the performance of the service network in

processing requests remains similar. Higher values did not result in improved

performance, but showed increased messaging overhead.

Other parameters used in the simulations depend on the specific scenario

to be tested. In particular, we vary the network size composing the system

from 200 to 5000 peers. The number of distinct services in the network is

important, as it puts under pressure the ability of MycoCloud to form many

interconnected clusters of same-type peers. In our experiments we vary the

number of services up to 25.

In the experiments we fixed Cmax = 60 with a power-law distribution. The

simulation time is from 200 to 400 seconds, depending on the time needed to

show the characteristics we want prove.

5.2 Experiments

We decided to test MycoCloud in a stable scenario. In this scenario the

network is static, in the sense that no peers join or leave the existing network

for the course of the experiment. This because a churn scenario was not needed

to prove our considerations. Then we designed three different type of load sce-

narios which are representative for the adaptive algorithm. In general every of

them makes the whole system in hard conditions, and are designed to compare

MycoCloud in adaptive version and in no adaptive version. Basically without

the third layer (see section Design in Chapter 3 for reference). In particular:

Test Peaks described in the subsection 5.2.1, is executed with 200 and 1000

nodes and with 5 services for both the cases. This test is performed for

two reasons. The first is to give a graphic example of how the clusters

evolve over the time, in which every service takes one at time almost

the whole resources of the system at sudden load peaks. The second

reason is to makes in trouble the algorithm, generating load peaks one

close to the other. This gives an idea of the convergence speed of the

56

5.2 Experiments

algorithm since one service at time will stole all the resources, and when

other peaks comes to the next clusters, they will be completely deprived

of their resources.

Test Easy is a trivial success case for the adaptation version, where a servi-

ce receives much more load then its own capacity. This test is perfor-

med with 1000 nodes and 5 services, since at large scale the situation

would be the same. The results of this experiment are illustrated in the

subsection 5.2.2 at page 63.

Test Constant The results of this test, executed with 1000 and 10.000 nodes

are reported and described in the subsection 5.2.3 at page 65. This

test provides an example of situation in which in all the services the

load has a shape with some steps growing until become constant. The

main objective of this test is to find a lower bound for the improvement

provided by the elasticity algorithm.

In every experiment will be evaluated the following different metrics:

(i) Response Time relevant for the clients, is a way to compare much closer

the benefits of the elasticity.

(ii) Response Time Optimality gives an idea on how far is the measured

response time is far from being equal to the optimal one of the ideal

system.

(iii) Load Per Service to see how the algorithm balances the load of all the

services.

(iv) Services Capacity useful to understand how the capacity varies according

the load events among the services.

(v) Network Messages to evaluate the increase of messages given by the

algorithm.

5.2.1 Test Peaks

Here are discussed the results of the experiment code-named Test Peaks

introduced above. This test executed with 1000 nodes and 5 services has load

peak coming at turn to every service as showed in figure 5.1.

57

MycoCloud Evaluation

Figura 5.1: Test Peaks - Load shape

Figura 5.2: Test Peaks - No Adaption: Load per service

The load injected in each peak is equal about to the 45% of the whole

system capacity, thus a given capacity for each services is not enough to hand-

le it. This can be seen in figure 5.2, where is shown how the load reach the

100% above the services, which are not able to satisfy the amount of requests.

Figure 5.5 shows how the queues grow making drastically worse the perfor-

mances of whole system (See Response Time in Figure 5.6 and Response Time

Optimality in Figure 5.8).

58

5.2 Experiments

Figura 5.3: Test Peaks - Adaption: Load per service measured

Figura 5.4: Test Peaks - No Adaption: Queue length

At contrary enabling the adaptive algorithm the system is able to counte-

ract to the sudden load peaks moving in turn the needed resources to service

in trouble. The figure 5.10 shows how each service takes the capacity from

other services (that are less loaded) during the peak instants and the load

measured among the services tends to be equalized by the algorithm moving

resources where necessary. This is underlined by the queue length in this case

(figure ??) respect to the precedent. For a comparison, the constant capacity

59

MycoCloud Evaluation

Figura 5.5: Test Peaks - Adaption: Queue length

Figura 5.6: Test Peaks - No Adaption: Response Time

in non adaptive version in shown in the figure 5.11.

The Response Time and the Response Time Optimality for the adaptive

case are showed respectively in Figure 5.7 and Figure 5.9. These graph shows

also the side effect of the deprivation of all the resources from a service. In

fact when the peaks arrive to the other services (1, 2 and 3) they will be with

very few nodes (Capacity) and they will affect much more than the service 0.

This characteristic is showed by the instantaneous peaks in the RT and RTO

60

5.2 Experiments

Figura 5.7: Test Peaks - Adaption: Response Time

Figura 5.8: Test Peaks - No Adaption: Response Time optimality

at times 100, 200 and 300. This “side effect” is very limited, rather instead

shows the very fast convergence into readapt the whole system, and as seen

the benefit are remarkable for this edge case.

Figure 5.12 and Figure 5.13 show how the network traffic increases in cor-

rispondence of the increase of service change. In particular this increase is due

to the fact that the topology have to rebuild itself to repair for “unexpected”

events.

61

MycoCloud Evaluation

Figura 5.9: Test Peaks - Adaption: Response Time Optimality

Figura 5.10: Test Peaks - Adaption: Capacity for each service

Finally the same test has been executed with 200 nodes in order to show

a graphic overview of the system evolution during the peaks. Figure 5.14

gives an image of the system before the peaks when is perfectly clusterized.

Figure 5.15 instead show how the clusters at turn steal all the resources from

the other ones.

62

5.2 Experiments

Figura 5.11: Test Peaks - No Adaption: Capacity for each service

Figura 5.12: Test Peaks - No Adaption: Network Messages

5.2.2 Test Easy

This last test is more trivial then the previous ones. In this scenario in fact

there is a service that receives a load a little higher then its capacity. In this

case with a static system the service cannot asks for other resources and is not

able to handle the requests. Figure 5.17 shows the load in each services and

in particular shows the load on service 0 growing to 100%.

63

MycoCloud Evaluation

Figura 5.13: Test Peaks - Adaption: Network Messages

Figura 5.14: Test Peaks - System at start

64

5.2 Experiments

(a) System at times between 25s and 100s (b) System at times between 110s and 200s

(c) System at times between 210s and 300s (d) System at times between 310s and 400s

Figura 5.15: Test Peaks - System evolution over the time

The performances in case of no elasticity are dramatically worst then the

adaptive version. The Response Time and the Respose Time optimality for

both the cases are shown respectively in Figure 5.18 and Figure 5.20 for the

no Adaptive and in Figure 5.19 and Figure 5.21 for the Adaptive case.

A wiev of the elasticity is given also by Capacity graphs in Figure 5.22 and

Figure 5.25.

5.2.3 Test Constant

In this test, called test constant, is shown a scenario in which every services

has a growing load that at certain point becomes constant. Every service is

loaded from about 30% to about 85% as shown in figure 5.27, thus no one is

overloaded. The idea is to design a scenario in which the System is able to

65

MycoCloud Evaluation

Figura 5.16: Test Easy - No Adaption: Load per service

Figura 5.17: Test Easy - Adaption: Load per service

execute its own requests without necessity of further capacity. Furthermore

we want define a random grow fo the load among the service, which in case of

no adaptation makes no difference, but in case of adaptation would be an hard

situation. This because almost at the same time even in coincident instants

some services will try to aquire resources.

The first test is with 1000 nodes and 5 services, and as said the system wi-

thout adaptation is able to handle the incoming load. In Figure 5.28 and Figu-

66

5.2 Experiments

Figura 5.18: Test Easy - No Adaption: Response Time

Figura 5.19: Test Easy - Adaption: Response Time

re 5.30 are showed both the Response Time and the Response Time Optimality

for this case.

Since the high load in service 1 and 4 (figure 5.27) the system is not able

to reach an ideal Response Time because the queues are not equal to zero (see

Figure 5.32).

The same experiment with the adaptive shows how the system in at the

beginning tries to reach a balance of the capacity among all the services. In

67

MycoCloud Evaluation

Figura 5.20: Test Easy - No Adaption: Response Time Optimality

Figura 5.21: Test Easy - Adaption: Response Time Optimality

this phase the services try to take the resources each other a reach a final

“agreement” bringing the Response Time of about 15% better then the test

with no adaption.

As anticipated this was a design on purpose, to make in trouble the algo-

rithm and the results show that it has some peaks in instants in which some

services comes up asking for capacity previously given. These are little instants

showing the fast react of the system, and in general even if this is an hard cases

68

5.2 Experiments

Figura 5.22: Test Easy - No Adaption: Capacity

Figura 5.23: Test Easy - Adaption: Capacity

expressly designed, after this critical instants the performance are better with

respect the no adaptation case. For a view of the Response Time and the

Response Time Optimality see Figure 5.29 and Figure 5.31.

Another interesting graph is the capacity per services (Figure 5.35) in which

is shown how the services finally converges to the capacity each one need.

Finally, in this test we made a comparison choosing two levels for the

threshold. The results for the adaptive test described above (Figure 5.31 and

69

MycoCloud Evaluation

Figura 5.24: Test Easy - No Adaption: Network messages

Figura 5.25: Test Easy - Adaption: Network messages

Figure 5.35) were with a threshold set to 50%. While the test executed with

a threshold at 75% showed more “noise”, how can be seen in the Capacity

graph in Figure 5.38. This is due to the fact that the higher threshold set in

the second case is more or less at the same value of the load among services,

which means that they will continue to steal resources each other.

Figure 5.36 and Figure 5.37 show how the performance are slightly worse

with respect to the previous case with a lower threshold (50%). However even

70

5.2 Experiments

Figura 5.26: Test Constant 1k No Adaptation - Load per service

Figura 5.27: Test Constant 1k Adaptation - Load per service

in this case the Response Time and the Response Time Optimality are better

than the case without adaptation. This gives an idea of when and how can

be useful have a right threshold. In the other previous test (Section 5.2.1)

this evaluation was not necessary since the services were either overloaded or

underloaded.

71

MycoCloud Evaluation

Figura 5.28: Test Constant 1k - No Adaption: Response Time

Figura 5.29: Test Constant 1k - Adaptation: Response Time

72

5.2 Experiments

Figura 5.30: Test Constant 1k - No Adaption: Response Time Optimality

Figura 5.31: Test Constant 1k - Adaptation: Response Time Optimality

73

MycoCloud Evaluation

Figura 5.32: Test Constant 1k - No Adaptation: Queue

Figura 5.33: Test Constant 1k - Adaptation: Queue

74

5.2 Experiments

Figura 5.34: Test Constant 1k- Adaptation: Capacity per service

Figura 5.35: Test Constant 1k- Adaptation: Capacity per service

75

MycoCloud Evaluation

Figura 5.36: Test Constant 1k - Adaptation: Response Time

Figura 5.37: Test Constant 1k - Adaptation: Response Time Optimality

76

5.2 Experiments

Figura 5.38: Test Constant 1k - Adaptation: Capacity per service

Figura 5.39: Test Constant 1k - No Adaptation: Network messages

77

MycoCloud Evaluation

Figura 5.40: Test Constant 1k - Adaptation: Network messages

Figura 5.41: Test Constant 1k - Adaptation: Network messages, higher threshold

78

5.2 Experiments

Figura 5.42: Test Constant 10k - Load per service

Figura 5.43: Test Constant 10k- Adaptation: Load per service

Finally Figure 5.39, Figure 5.40 and Figure 5.41 show the increasing in

message traffic respectively for the cases with no adaptation, adaptation with

50% threshold and adaptation with 75%. The results show how the topolo-

gy messages have an increase in adaptation test especially in case of higher

threshold. This, as said before, is due to the topology algorithm that needs

to continuously rebuild the network, resulting higher in the test with a wrong

threshold.

79

MycoCloud Evaluation

Figura 5.44: Test Constant 10k - No Adaptation: Response Time

Figura 5.45: Test Constant 10k- Adaptation: Response Time

On this load pattern has been performed also a larger-scale test, involving

10.000 nodes and 20 services. This test has two main scopes: the first is to

evaluate the general performances of the system at very large-scale. The second

is to prove that in both the cases analyzed (adaptation and no adaptation) the

trend is the same.

This test is also a little more challenging for the adaptive algorithm since

much more services “fight” asking for resources each others in very close time

80

5.2 Experiments

Figura 5.46: Test Constant 10k - Adaptation: Response Time Optimality

Figura 5.47: Test Constant 10k- No Adaptation: Response Time Optimality

instants. In fact along our experiments this kind of behavior is shown as the

most challenging for the algorithm. The load among all the services is shown

in Figure 5.42. Despite this the performances improvement is higher than the

no Adaptive version.

Figure 5.45 and Figure 5.46 have shown an improved Response Time, thus

Response Time Optimality, with respect the no adaptive case (Figure 5.44

Figure 5.47).

81

MycoCloud Evaluation

Figura 5.48: Test Constant 10k- Adaptation: Capacity per service

Figura 5.49: Test Constant 10k- No Adaptation: Capacity per service

It is useful also to see how the capacity per service shown in Figure 5.48

converges to a stable assignment of capacity for each service after a first “ac-

cording phase”. For a comparison see Figure 5.49, in which is shown the case

in which the capacity remains fixed for each service in case of no adaptation.

Another idea of the service adaptation is given by the load measured among

all the services, which converge to the same one with adaptation (Figure 5.43),

while is fixed in the static case (Figure 5.42).

82

5.3 Comparisons and discussion

5.3 Comparisons and discussion

In this section we discuss the achieved results for MycoCloud. The main

aspect is in the improvement given by the elasticity algorithm in every condi-

tion. The tests described in the previous Chapter showed how even in cases

designed to put in trouble the elasticity algorithm, it showed better perfor-

mances compared to a static system. In other cases, and in general on almost

every test executed the benefits were net. Moreover the elasticity repair for

some inefficiency coming from the load-balancer algorithm. As seen in the

results provided above the Response Time do not reach a desired optimality in

a static system, while enabling elasticity among the services the performances

become better.

Another important property evaluated in the elasticity algorithm is the

level of reactivity (i.e., the ability to quickly re-adapt the assigned capacity to

every service with sudden changes in the workload). In this regard, the tests

described above were designed on purpose to stress the algorithm. These tests

have shown how this property is satisfied even in hard-edge cases, ensuring a

fast reaction in every condition.

The main cost to pay with such elastic system is a little increase in the

network traffic. This is shown to be higher especially for the topology messages,

since every time a node changes its service the topology needs to rebuild itself.

This situation can be seen as churn events, in which nodes leave and join the

network and the topology needs to reorganize itself.

A relevant factor is that all the reported tests do not consider churn events

(i.e., faults). This because the effectiveness of the overlay and load-balancer

algorithms against this potential adversarial environment conditions due to

dynamism in the network were already tested showing good results in [34,

37]. Regarding the elasticity algorithm we believe that global performances

compared a static system in churn scenario would be just a strong remark of

this approach. In fact, a system that lose nodes in a static service cannot

replace them, while enabling elasticity it can ask capacity from other services

readjusting the whole system.

We finally observed that MycoCloud is able to deal also with a relevant

number of nodes (10.000 nodes) while maintaining unaltered the quality of

achieved results, thus showing a good level of scalability for the technique

83

MycoCloud Evaluation

itself. The key to the higher scalability of MycoCloud is that a node does not

need to know neither the total number of nodes nor the total capacity of the

system.

84

Capitolo 6

Conclusions and Future Works

In this thesis we have presented MycoCloud, a decentralized algorithm for

scaling services in a cloud computing context. In particular, we propose a novel

algorithm based on a heuristic placement, which, in combination with a robust

overlay network among services and a decentralized load balancing technique,

provides an effective decentralized solution for improving the performances in

the cloud. The solution we have proposed will be suitable in all the situations

in which a centralized solution is not feasible, like, for example, when dealing

with multiple cloud providers in a federated cloud scenario. We implemented

our technique using Protopeer toolkit and validated it with an extensive set of

simulations.

The results attested the validity of our approach showing a net improve-

ment with respect to no adaptive systems. We have also seen that the approach

also inherits the typical benefits of bio-inspired self-organization, such as the

scalability with respect to the number of peers, and to dynamism introduced

by service elasticity. Experiments in fact show that MycoCloud scales to a

large number of nodes (10.000) while maintaining the same performances.

The main extensions we consider for this system are: (i) consider other

parameters in the heuristic placement, (ii) consider the possibility to have addi-

tional resources, and (iii) consider the possibility to have node “multi-services”

nodes. The former direction would takes in account other characteristics that

are not currently used in the selection. Example of additional characteristics

to add to the heuristic function may be topological/physical locations of the

different peers or commercial costs in case of Cloud providers. The second

possible extension focuses on the possibility to have “transparent”resources,

that is resources in idle state which can switch-on a service on request. In

this way we would evaluate situations in which the heuristic placement may

have other choices for the selection if the algorithm, looking for a possible

improvement for the performances. The last extension is to have nodes able

to run more then on services at same time and instead of perform an atomic

service change, rather would provide a certain amount of capacity. Given the

results this looks as a way to reduce the network traffic in case of an high

number of service changes, case in which the topology needs to rebuild itself.

Ringraziamenti

Il primo immenso ringraziamento va ai miei genitori. Li ringrazio per aver

sempre creduto in me e per avermi sostenuto affichè raggiungessi i miei obbiet-

tivi. Ringrazio poi le mie due sorelle Marilena ed Antonella, che con il loro

affetto mi sono sempre state vicine nonostante la notevole distanza.

Un ringraziamento va a tutta la mia famiglia, e in particolare a due dei

miei zii. Zii, ma allo stesso tempo padri e amici, Domenico e Donato. Sono

da sempre e sono tutt’ora i miei modelli di vita, ed è principalmente grazie a

loro che sono quello che sono.

Un doveroso grazie va ai miei amici di una vita: Angelo, Valerio, Giulio,

Davide, Marco, Raffaele, Gerardo, Fabio, Domenico e Giancanio, meglio co-

nosciuti come La ditta, e Serena, Rossella e Simona. Li ringrazio per avermi

regalato i migliori anni della mia vita, e soprattuto per continuare a farlo.

Ringrazio poi la mia “seconda famiglia”, ovvero i miei coinquilini ma so-

prattutto amici: Mario, Ludovica e Noemi, più l’adottivo “zio” Davide. Mario

un grandissimo amico con cui condivido praticamente tutto; Ludovica, un’a-

mica sulla quale si può sempre contare per serate sconclusionate (vedi gite

notturne in taxi); Noemi, un’amica sempre pronta a farsi ascoltare; e Davide

un amico su cui si può far sempre affidamento, soprattutto se si tratta di una

birra.

Infine, non posso esimermi dal ringraziare Elisabetta. La ringrazio per

avermi dato in più occasioni modo di lavorare su progetti importanti e formativi

durante questi due anni al Politecnico. Tra questi in particolare quello svolto

negli Stati Uniti, dove ho avuto la fortuna di lavorare con Peppo, Paul e

Daniel che ringrazio, che è stata per me un’importante opportunità di crestita

professionale e personale.

Donato Lucia

Bibliografia

[1] Apache mina. http://mina.apache.org/, 2004-2009.

[2] Nimbus project. http://www.nimbusproject.org/, September 2011.

[3] Muthitacharoen A., Morris R., Gil T.M., and Chen B. Ivy a read/write

peer-to-peer file system. pages 31–44, Boston, MA, 2002. 5th Symposium

on Operating Systems Design and Implementation (OSDI ’02).

[4] Rowstron A. and Druschel P. Storage management and caching in past, a

large-scale, persistent peer-to-peer storage utility. pages 188–201, Banff,

Alberta, Canada, 2001. 18th ACM Symposium on Operating Systems

Principles (SOSP ’01), Chateau Lake Louise.

[5] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight

Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous

computing. Commun. ACM, 43:74–82, 2000.

[6] Carson ans M. and D. Santay. Nist net - a linux-based network emulation

tool. Computer Communication Review, 2004.

[7] Cosmin Arad, Jim Dowling, and Seif Haridi. Building and evaluating

p2p systems using the kompics component framework. In Peer-to-Peer

Computing. IEEE Ninth International Conference, 2009.

[8] E. Bonabeau, M. Dorigo, and G. Theraula. Swarm intelligence from

natural to artifical systems. Oxford Press, 1999.

[9] Adam C and Stadler R. A middleware design for large-scale clusters

offering multiple services. IEEE Trans Netw Service Manag, 3:1–12, 2006.

BIBLIOGRAFIA

[10] Nicolò M. Calcavecchia, Bogdan A. Caprarescu, Elisabetta Di Nitto, Da-

niel J. Dubois, and Dana Petcu. Depas: a decentralized probabilistic

algorithm for auto-scaling. Computing, 94:701–730, September 2012.

[11] L. De Castro. Fundamentals of Natural Computing: Basic Concepts,

Algorithms, And Applications. Chapman & Hall/CRC, 2006.

[12] Dabek F., Kaashoek F., D. Karger, R. Morris, and Stoica I. Wide-area

cooperative storage with cfs. pages 202–215, Banff, Alberta, Canada,

2001. 18th ACM Symposium on Operating Systems Principles (SOSP

’01), Chateau Lake Louise.

[13] N. Forbes. Imitation of life: How biology is inspiring computing. MIT

Press, 2004.

[14] M. Franceschelli, A. Giua, and C. Seatzu. Load balancing over heteroge-

neous networks with gossip-based algorithms. ACC’09, pages 1987–1993.

IEEE Press, 2009, Piscataway, NJ, USA, 2009.

[15] G. Kan. Gnutella. Peer-to-Peer: Harnessing the Benefits of a Disruptive

Technology. O’Reilly & Associates, March 2001.

[16] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica. The impact of dht routing geometry on resilience and

proximity. ACM SIGCOMM 2003, 2003.

[17] Kubiatowicz J., Bindel D., Chen Y., Eaton P., Geels D., Gummadi R.,

Rhea S., Weatherspoon H., Weimer W., C. Wells, and Zhao B. Ocean-

store: An architecture for global-scale persistent storage. In Computer

Science, number 2218, pages 190–201, Cambridge, MA, 2000. 9th Inter-

national Conference on Architecture Support for Programming Languages

and Operating Systems (ASPLOS 2000), Springer-Verlag.

[18] M. Jelasity, W. Kowalczyk, and M. Van Steen. Newscast computing.

Technical Report IR-CS-006, Vrije Universiteit Amsterdam Department

of Computer Science Internal, 2003.

[19] M. Jelasity, A. Montresor, G. Jesi, and S. Voulgaris. Peersim: A peer-to-

peer simulator.

90

BIBLIOGRAFIA

[20] L. Jie and H. Kameda. Load balancing problems for multiclass jobs in

distributed/parallel computer systems. volume 47, pages 322–332. IEEE

Transactions on Computers, March 1998.

[21] Gummadi K.P., Dunn R.J., Saroiu S., Gribble S.D., Levy H.M., and Zaho-

rjan J. Measurement, modeling, and analysis of a peer-to-peer file-sharing

workload. In 19th ACM Symposium on Operating Systems Principles

(SOSP ’03), pages 314–329, Bolton Landing, NY, 2003. ACM Press.

[22] Rizzo L. Dummynet and forward error correction. pages 129–137, New

Orleans, LA, 1998. 1998 USENIX Annual Technical Conference.

[23] W. Liu, J. Yu, J. Song, X. Lan, and B. Cao. Erasp: An efficient and

robust adaptive superpeer overlay network. 4976:468, 2008. Lecture notes

in Computer science.

[24] Jelasity M., Voulgaris S., Guerraoui R., Kermarrec A-M, and van Steen M.

Gossip-based peer sampling. ACM Transactions on Computer System,

35:1–36, 2007.

[25] A. Montresor. A robust protocol for building superpeer overlay topolo-

gies. pages 202–209, Zurich, Switzerland, August 2004. 4th International

Conference on Peer-to-Peer Computing.

[26] R. Nagpal. Programmable self-assembly using biologically-inspired

multiagent control. Autonomous Agents and Multiagent Systems, 2002.

[27] E. Di Nitto, D. J. Dubois, R. Mirandola, F. Saffre, and R. Tateson. Apply-

ing self-aggregation to load balancing: experimental results. volume 3rd

International Conference on Bio-Inspired Models of Network, Information

and Computing Sytems, pages 14:1–14:8, Brussels, Belgium, 2008.

[28] Leads O. Opennebula: the open source toolkit for cloud computing. The

3rd Conference about open source in the data center (OSDC 2011), April

2001.

[29] Doursat R. Programmable architectures that are complex and self-

organized: From morphogenesis to engineering. University of Sou-

thampton, Winchester, UK, 2008. 1th International Conference on the

Simulation and Synthesis of Living Systems (ALIFE XI).

91

BIBLIOGRAFIA

[30] J. Kennedy R. C. Eberhart, Y. Shi. Swarm Intelligence. Morgan

Kauffmann, 2001.

[31] M. Randles, O. Abu-Rahmeh, P. Johnson, and A. Taleb-Bendiab. Biased

random walks on resource network graphs for load balancing. The Journal

of Supercomputing, 53:138–162, 2010.

[32] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, and M. Parashar. Peer-to-

peer cloud provisioning: Service discovery and load-balancing. In Cloud

Computing, volume 0 of Computer Communications and Networks, pages

195–217. Springer London, 2010.

[33] Rhea S., Eaton P., Geels D., Weatherspoon H., Zhao B., and Kubiato-

wicz J. Pond: the oceanstore prototype. Number 14, pages 202–215,

San Francisco, CA, 2003. 2nd USENIX Conference on File and Storage

Technologies (FAST ’03).

[34] Paul L. Snyder, Rachel Greenstadt, and Giuseppe Valetto. Myconet: A

fungi-inspired model for superpeer-based peer-to-peer overlay topologies.

San Francisco, California, USA, September 2009. Third IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems, SASO

2009.

[35] Sharma U, Shenoy P, Sahu S, and Shaikh A. A cost-aware elasticity provi-

sioning system for the cloud. In IEEE Computer Society, pages 559–570,

Washington, DC, USA, 2011. 31st international conference on distributed

computing systems, ICDCS ’11.

[36] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and

D. Becker. Scalability and accuracy in a large-scale network emulator.

5th OSDI, December 2002.

[37] Giuseppe Valetto, Paul Snyder, Daniel J. Dubois, Elisabetta Di Nitto,

and Nicolò M. Calcavecchia. A self-organized load-balancing algorithm

for overlay-based decentralized service networks. pages 168–177. Self-

Adaptive and Self-Organizing Systems (SASO), Fifth IEEE International

Conference, October 2011.

92

BIBLIOGRAFIA

[38] Galuba W, Aberer K, Despotovic Z, and Kellerer W. Protopeer: a

p2p toolkit bridging the gap between simulation and live deployment.

pages 60:1–60:9, ICST, Brussels, 2009. 2nd international conference on

simulation tools and techniques, Simutools ’09.

[39] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gurupra-

sad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. Emu-

lab. In 5th Symposium on Operating Systems Design and Implementation,

Boston, Massachusetts, USA, December 9-11 2002.

[40] Stephen Wolfram. A new kind of science. Wolfram Media Inc, Champaign,

Ilinois, US, United States, 2002.

93

