Politecnico
di Milano

Coding in Python

11-15 Giugno 2018

Lezione 2

(GO

STRINGS

Looking Inside Strings

P

S

e \We can get at any single
character in a string using an
index specified in square
brackets

¢ The index value must be an
Integer and starts at zero

e The index value can be an
expression that is computed

bifainlain| a
0O 1 2 3 4 5

>>>
>>>
>>>
a

>>>
>>>
>>>
n

fruit = 'banana'’
letter = fruit[1l]
print(letter)

X = 3
w = fruit[x - 1]
print (w)

Looping Through Strings

e Using a while statement, an iteration variable, and
the len function, we can construct a loop to look at
each of the letters in a string individually

fruit = 'banana' 0b
index = 0 1a
while index < len(fruit): 2n
letter = fruit[index] 3 a
print(index, letter) 4n

index = index + 1
5a

Looping Through Strings

e A definite loop using a for statement is much more
elegant

e The iteration variable is completely taken care of by
the for loop

fruit = 'banana'
for letter in fruit:
print(letter)

QO 5 O 5 0 T

Slicing Strings

¢ \We can also look at

any continuous section
of a string using a colon
operator

The second number is
one beyond the end of
the slice - “up to but not
including”

If the second number is
beyond the end of the
string, it stops at the
end

o=

>>> g = 'Monty Python'
>>> print(s[0:4])
‘Mont’

>>> print(s[6:8])
Py’

>>> print(s[:2])
‘Mo’

>>> print(s[8:])
‘thon’

>>> print(s[:])
‘Monty Python’

>>> print(s[7:3:-1])
‘yP y’

>>> print(s[::-1])
‘nohtyP ytnoM’

Plyltihfo|n
5 6 7 8 9 1011

Exercise

e Write a program that decides whether a word is a
palindrome

» adda
» Ottetto
» radar

Solution 1

word = input('Insert a word ')
i=20
j = len(word)-1

while i<j/2 and word[i]==word[j]:
1= i+l
J = J-1
if 1 >= /2
print('the word is palindrome')
else

print('the word is not palindrome')

Solution 2

word = input('Insert a word ')
if word == word[::-1]:

print('the word is palindrome')
else

print('the word is not palindrome')

String Concatenation

e When the + operator is applied to strings, it means
“concatenation”

>>> a = 'Hello'

>>> b = a + 'There'

>>> print(b)

HelloThere

>>> ¢c =a + ' ' + 'There'
>>> print(c)

Hello There

>>>

Using in as a Logical Operator

e The in keyword can also be used to check to see if
one string is “in” another string

e The in expression is a logical expression that returns
True or False and can be used in an if statement

>>> fruit = 'banana'
>>> 'n' in fruit
True

>>> 'm' in fruit
False

>>> 'man' in fruit
True

>>> jf 'a' in fruit :
print('Found it!"')

Found it!

>>>

String Library

e Python has a number of
string functions which are
In the string library

e These functions are
already built into every
string - we invoke them by
appending the function to
the string variable

e These functions do not
modify the original string,
Instead they return a new
string that has been
altered

>>> greet = 'Hello Bob'

>>> zap = dgreet.lower()

>>> print(zap)

hello bob

>>> print(greet)

Hello Bob

>>> print('Hi There'.lower())

hi there
>>>

String Library

>>> gtuff = 'Hello world'

>>> type(stuff)

<class 'str'>

>>> dir(stuff)

['capitalize', 'casefold', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'format map’,
'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',

'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace',

'istitle', 'isupper', 'join', 'ljust', 'lower',6 'lstrip',
'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition’', 'rsplit', 'rstrip', 'split', 'splitlines’',

'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper',

'z£ill']

https://docs.python.org/3/library/stdtypes.html#string-methods

String Library

str. replace(old, newl, count])
Return a copy of the string with all occurrences of substring o/d replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

str. rfind(subl, start, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

str.rindex(subl, start], end]])
Like rfind() but raises valueError when the substring sub is not found.

str. rjust(width|, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to len(s).

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

str.rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit() behaves like split() which is described in detail below.

Searching a String

e We use the find() function to
search for a substring within
another string

e find() finds the firstoccurrence 0 1 2 3 4 5
of the substring

e If the substring is not found, >>> fruit = 'banana’
find t 1 >>> pos = fruit.find('na')
ind() returns - >>> print(pos)

¢ Remember that string position 2

>>> ga = fruit.find('z')

starts at zero >>> print(aa)

Making everything UPPER CASE

e You can make a copy of a
string in lower case or upper

case
Often when we are

searching for a string using

find() we first convert the
string to lower case so we
can search a string
regardless of case

>>> greet = 'Hello Bob'
>>> nnn = greet.upper()
>>> print(nnn)

HELLO BOB

>>> www = greet.lower()
>>> print (www)

hello bob

>>>

Search and Replace

e The replace() function
s like a “search and
replace” operation in a

>>> greet = 'Hello Bob'
word processor >>> nstr = greet.replace('Bob', 'Jane’
>>> print(nstr)
e It replaces all Hello Jane
occurrences of the >>> nstr = greet.replace('o','X")
(

>>> print(nstr)

search string withthe "7 °"_ =
replacement string >>>

Stripping Whitespace

e Sometimes we want to take a string and remove
whitespace at the beginning and/or end

e Istrip() and rstrip() remove whitespace at the left or
right

e strip() removes both beginning and ending
whitespace

>>> greet = ' Hello Bob
>>> greet.lstrip()
'Hello Bob
>>> greet.rstrip()
Hello Bob'
>>> greet.strip()

'"Hello Bob'
>>>

Prefixes

>>> line = 'Please have a nice day'
>>> line.startswith('Please’)
True

>>> line.startswith('p')
False

Parsing and extracting

From stephen.marquard@uct.ac.za Sat Jan

>>>
>>>
>>>
21

>>>
>>>
31

>>>
>>>

uct.

21
\/

31
\/

5 09:14:16 2008

data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

atpos = data.find('@
print(atpos)

sppos = data.find('
print (sppos)

host = data[atpos+1
print (host)
ac.za

")

',atpos)

Sppos]

LISTS

A List is a Kind of Collection

e A collection allows us to put many values in a single
“variable”

e A collection is nice because we can carry all many
values around in one convenient package.

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

List Constants

e List constants are surrounded by square brackets
and the elements in the list are separated by commas

e A list element can be any Python object - even

another list
e A list can be empty

>>> print([1l, 24, 76])

[1, 24, 76]

>>> print(['red', 'yellow', 'blue'])
['red', 'yellow', 'blue']

>>> print(['red', 24, 98.6])

['red', 24, 98.6]

>>> print([1, [5, 6], 71])

[1, [5, 6], 7]

>>> print([])

[]

A use of lists we have already seen

for i in [5, 4, 3, 2, 1]
print (i)
print('Blastoff!’)

=N WO

Blastoff!

Looking Inside Lists

like strings, we can get at any single element in
& using an index specified in square brackets

>>> friends = ['Joseph', 'Glenn', 'Sally']
Joseph| Glenn | Sally >>> print(friends[1])

Glenn

0 1 2 >>>

How Long is a List?

The len() function takes a list as Zii
a parameter and returns the

: . 9
number of elements in the list .

Actually len() tells us the >>>
number of elements of any set 4
or sequence (such as a string...) <<

greet = 'Hello Bob'
print(len(greet))

x=11, 2, 'joe',
print(len(x))

99]

Using the range Function

e The range function
returns a list of numbers
that range from zero to
one less than the

parameter >>> print(range(4))
[OI ll 2! 3]
e \We can construct an >>> friends = ['Joseph', 'Glenn',

'Sally']

index loop using for and >>> print(len(frienas))
an integer iterator ’

>>> print(range(len(friends)))
[OI 1’ 2]
>>>

Concatenating Lists Using +

e \We can create a new list by adding two existing lists
together

>>> a [1, 2, 3]
>>> b = [4, 5, 6]
>>> ¢ = a + b

>>> print(c)

[1, 2, 3, 4, 5, 6]
>>> print(a)

[1, 2, 3]

Lists Can Be Sliced Using :

>>> t = [9, 41, 12, 3, 74, 15]
>>> t[1:3]

[41,12] $\\\\\\\\“\\\\\\\\\>Renuﬂnben the second number

t :4 « . 13 . . ”
T;> 4£ 12 31 is “up to but not including

>>> t[3:]

[3, 74, 15]

>>> t[:]

[9, 41, 12, 3, 74, 15]
>>> 5 = t[:]

>>> s

[9, 41, 12, 3, 74, 15]

List Methods

>>> x = list()

>>> type(x)

<type 'list'>

>>> dir(x)

['append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

>>>

http://docs.python.org/tutorial/datastructures.html

Building a List from Scratch

e \We can create an empty list and then add elements
using the append method

e The list stays in order and new elements are added
at the end of the list

>>> stuff = list()

>>> stuff.append('book’)
>>> stuff.append(99)

>>> print(stuff)

[" book', 99]

>>> stuff.append('cookie')
>>> print(stuff)

[' book', 99, 'cookie']

Is Something in a List?

e Python provides two operators that let you check if an
item is in a list

e These are logical operators that return True or False

e They do not modify the list

>>> some = [1, 9, 21, 10, 16]
>>> 9 in some

True

>>> 15 in some

False

>>> 20 not in some

True

>>>

It is a way of creating a new list from an existing one.

Its syntax is derived from a construct in set theory
notation that applies an operation to each item in a

set | expression for var in list |
p S>> | = [1,2,3’4,5]
: list hensi introduced
p >>> eSS = [X + 10 for X in L]];}S, Sil?lrglirirzgligzgs are Imtroduce

...We are creating a list...

IS equivalent to

. 55> res = [# o res = st

» >>>forxinl:
» ... res.append(x+10)

Comprehensions are typically a lot faster
than using for loops explicitly

Example

e a = [chr(ord(‘a")+i) foriin range(26)]
e Equivalent to

e a=]]

e foriinrange(26)

@ a.append(chr(ord(‘a’)+i))

_Y_f

A numerical value
corresponding to ‘a’

Strings are immutable and lists are
mutable

e Strings are “immutable” - we cannot change the
contents of a string - we must make a new string to
make any change

e Lists are “mutable” - we can change an element of a
list using the index operator

>>> lotto = [2, 14, 26, 41, 63]

>>> fru%t = 'Banana’ >>> print(lotto)
>>> fruit[0] = 'b [2, 14, 26, 41, 63]
Traceback >>> lotto[2] = 28
TypeError: 'str' object does not >>> print(lotto)

support item assignment [2, 14, 28, 41, 63]

Python types and immutability

Class Description Immutable?
bool Boolean value v

int integer (arbitrary magnitude) v
float floating-point number v

list mutable sequence of objects

tuple immutable sequence of objects v

str character string v

set unordered set of distinct objects

frozenset | immutable form of set class v

dict associative mapping (aka dictionary)

e From https://medium.com/@meghamohan/mutable-
and-immutable-side-of-python-c2145cf72747

Built-in Functions and Lists

e There are a number of functions built into Python that
take lists as parameters

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print(len(nums))

6

>>> print(max(nums))

74

>>> print(min(nums))

3

>>> print(sum(nums))

154

>>> print(sum(nums)/len(nums))
25.6

Best Friends: Strings and Lists

>>> abc = 'With three words' >>> print(stuff)
>>> stuff = abc.split() ['With', 'three', 'words']
>>> print(stuff) >>> for w in stuff
['With', 'three', 'words'] c e print(w)
>>> print(len(stuff)) “oe
3 With
>>> print(stuff[0]) Three
With Words
>>>

Split breaks a string into parts and produces a list of strings. We think of these
as words. We can access a particular word or loop through all the words.

Best Friends: Strings and Lists

>>> line = 'A lot

>>> etc = line.split()

>>> print(etc)

['A'", '"lot', 'of', 'spaces']
>>>

>>> line = 'first;second;third'

>>> thing = line.split()
>>> print(thing)

["first;second;third’]

>>> print(len(thing))

1

>>> thing = line.split(';')
>>> print(thing)

["first', 'second', 'third']
>>> print(len(thing))

3

>>>

of spaces'’

When you do not specify a
delimiter, multiple spaces are

treated like one delimiter

You can specify what delimiter

character to use in the splitting

The Double Split Pattern

e Sometimes we split a line one way, and then grab
one of the pieces of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words
email

line.split()
words|[1]

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1l] stephen.marquard@uct.ac.za

print email

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1] stephen.marquard@uct.ac.za

pieces = email.split('@") ['stephen.marquard', 'uct.ac.za']
print pieces[1]

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1] stephen.marquard@uct.ac.za

pieces = email.split('@") ['stephen.marquard', 'uct.ac.za']

print(pieces[1l]) 'uct .ac.za'

FILES

Where are files?

T T T -1

Central

Processing
Unit

Main

Peripheral

Memory | | Interface 11

Peripheral
Interface In

Secondary
Memory

/

Files are here

File Processing

e A text file can be thought of as a sequence of lines

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za

Subject: [sakai] svn commit: r39772 - content/branches/

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

http://www.py4e.com/code/mbox-short.txt

Opening a File

e Before we can read the contents of the file, we must
tell Python which file we are going to work with and
what we will be doing with the file

¢ This is done with the open() function

e open() returns a “file handle” - a variable used to
perform operations on the file

e Similar to “File -> Open” in a Word Processor

e File handles are not numbers, sequences or
mappings and they do not respond to expression
operators

Common file operations

Operation

output = open(x'C:\spam’, "w')
input = open(‘data', 'r")
input = open('data')

aString = input.read()
aString = input.read(N)
aString = input.readline()

aList = input.readlines()
output.write(aString)
output.writelines(aList)
output.close()

output.flush()

anyrile.seek(N)

for line in open('data'): use line
open('f.txt', encoding="latin-1")
open('f.bin', 'rb')

codecs.open('f.txt', encoding="utf8')

open('f.bin', 'rb')

e >>> aFile = open(filename, mode)
e >>> agFile.method()

Interpretation

(reate output file { 'w ' means write)

(reate input file {"r * means read)

Same as prior line (' ¢ * is the default)

Read entire file into a single string

Read up to next N characters (or bytes) into a string
Read next line (induding \n newline) into a string
Read entire file into list of line strings (with \n)
Write a string of characters {or bytes) into file
Wirite all line strings in a list into file

Manual close (done for you when file is collected)
Flush output buffer to disk without dosing
Change file position to offset N for next operation
File iterators read line by line

Python 3.X Unicode text files (str strings)

Python 3.X bytes files (bytes strings)

Python 2.X Unicode text files (unicode strings)
Python 2.X bytes files (str strings)

modes

read(r), write(w), append(a)
binary(b)

both input and output (+)

Using files

>>> myFile = open(‘myFile.txt’, ‘w’)
>>> myFile.write(‘hello text file\n’)

16

>>> myFile.write(‘goodbye text file\n’)

18
>>> myFile.close()

>>> myFile.open(‘myFile.txt’)

>>> myFile.readline()
‘hello text file\n’

>>> myFile.readline()
‘goodbye text file\n’
>>> myFile.readline()

17

>>> for line in open(’‘myFile.txt’):
print(line)

hello text file
goodbye text file

Esercizio

e Scrivere un programma che legge un testo da file e
conta il numero di articoli determinativi e
iIndeterminativi nel file

Altri esercizi

e Studiare la documentazione sulle operazioni per le
stringhe e le liste e provare a utilizzare le operazioni
che interessano di piu

e Cercare su wikipedia il significato di file csv

e Scrivere un programma che, dato un file strutturato
secondo il formato csv e contenente nome, cognome
e voto di un insieme di studenti, calcola la media dei
voli

Acknowledgements / Contributions

(MO

Part of these slides are Copyright 2010- Charles R. Severance (www.dr-chuck.com) of the
University of Michigan School of Information and made available under a Creative Commons
Attribution 4.0 License.

Initial Development: Charles Severance, University of Michigan School of Information
Adaptation and extensions for the Geo-Python Lab needs: Elisabetta Di Nitto, Politecnico di Milano

Other slides have been adapted from material by my colleague Prof. Sam Guinea, Politecnico di
Milano

