
Politecnico di Milano
Scuola di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e

Bioingegneria

Adding Awareness to a Software Forge:
Development of the TITANS Approach and

Lessons Learnt in Participating in an Apache
Open Source Development Process

Relatore: Prof. Elisabetta Di Nitto

Correlatori: Dr. Roberto Galoppini

Dr. Damian Andrew Tamburri

Tesi di Laurea di: Simone Gatti matr. 770756

Stefano Invernizzi matr. 765873

Anno Accademico 2012-2013

Alle nostre famiglie e a tutte le persone a noi care,

che ci hanno sostenuti e incoraggiati

per tutta la durata del nostro percorso di studi

e che hanno reso possibile il raggiungimento

di questo importante traguardo.

Desideriamo innanzitutto ringraziare la professoressa Elisabetta Di Nitto,

che in questi mesi ci ha supportati nell’elaborare la nostra tesi e che ci ha

guidati con i suoi preziosi insegnamenti.

Un ringraziamento speciale al dottor Roberto Galoppini, per averci in-

trodotti al mondo dell’open source e per aver condiviso con noi la sua es-

perienza, grazie alla quale abbiamo potuto relazionarci efficacemente con la

comunità di Allura.

Ringraziamo inoltre il dottor Damian Andrew Tamburri, per averci in-

trodotto le sue brillanti idee e per averci consentito di partecipare allo sviluppo

di quella che riteniamo un’importante ricerca.

Un ringraziamento a tutta la comunità di Allura, che ci ha sempre di-

mostrato una grande disponibilità e che ha accolto, stimolato e fatto crescere

il nostro lavoro.

Infine, grazie a tutti coloro che hanno condiviso con noi questo percorso,

tra le gioie e le fatiche dello studio e dei tanti progetti universitari, rendendo

indimenticabili questi anni trascorsi tra le aule e la segreteria.

Milano, 22 Aprile 2013

Stefano e Simone

Contents

1 Introduction 1

1.1 Original Contributions . 3

1.2 Outline of the Thesis . 4

2 State of the Art 7

2.1 Global Software Engineering . 7

2.2 Open Source Software . 12

2.3 Coordination within an OSS community 16

2.4 Awareness in a distributed context 20

2.5 Discussion . 24

3 Problem Analysis 27

3.1 Identification of needs from the state of the art analysis 27

3.2 Survey . 30

3.2.1 The questionnaire . 31

3.2.2 Background of the respondents 32

3.2.3 Results concerning management of collaborations and

partnerships . 37

3.2.4 Results about organizations and developers’ profile details 39

3.3 Conclusions of the analysis . 43

4 Allura Apache Podling 45

4.1 The Architecture of Allura . 45

4.2 Contribution Policies . 51

4.3 The Development Process . 52

5 Our Extension: Allura TITANS 55

5.1 User profiles . 56

CONTENTS

5.2 Organizations . 61

5.3 User statistics . 69

5.4 Organization statistics . 80

5.5 Development and Discussion Process in the Allura community . 85

6 Evaluation 89

6.1 Evaluation by the community 89

6.2 Using collected metrics to uncover social structures 91

6.2.1 Introduction to the study on social structures 92

6.2.2 Classification of social structures based on our data . . . 93

6.2.3 Formal Networks . 94

6.2.4 Informal Networks . 96

6.2.5 Networks of Practice . 98

6.2.6 Informal Communities 103

6.2.7 Results . 105

7 Conclusions and future work 107

A Survey 111

A.1 The questionnaire . 111

A.2 Detailed results . 121

B Sample metrics gathered from OSS projects 131

B.1 Distributions of projects contribution 131

B.2 Metrics of projects . 137

List of Figures 139

List of Tables 143

Bibliography 145

viii

Sommario

Negli ultimi anni, lo sviluppo di software per mezzo di team operanti in un con-

testo geografico distribuito ha ricevuto un crescente interesse. Tale fenomeno

è legato soprattutto alla competizione che caratterizza il mercato odierno e

che genera nelle aziende produttrici di software la necessità di sviluppare i loro

prodotti in tempi brevi e con budget ridotti, senza però rinunciare a elevati

standard qualitativi. Questo approccio nello sviluppo del software è conosciuto

con il nome di Global Software Engineering (GSE), ma viene anche indicato

per mezzo di termini simili, quali Distributed Software Development (DSD) e

Global Software Development (GSD).

Oltre a promettere il raggiungimento di obiettivi ambiziosi come la pro-

duzione di software di qualità a basso costo e in tempi rapidi, lo sviluppo

distribuito del software comporta anche diversi problemi organizzativi e di

comunicazione, legati sia alla separazione territoriale, sia alle differenze sociali

e culturali tra le persone coinvolte.

La barriera più importante tra i membri di un team distribuito è la mancan-

za di conoscenza personale, alla quale consegue una scarsa fiducia reciproca.

Inoltre, la separazione geografica tra i luoghi di lavoro e la distanza temporale

tra gli istanti nei quali le attività vengono svolte rendono difficile il controllo

dello stato di avanzamento del progetto. Incrementare la consapevolezza delle

competenze e degli interessi dei collaboratori, cos̀ı come della loro posizione

geografica, può ridurre l’impatto dei problemi sopra menzionati.

L’obiettivo principale di questa tesi è di investigare le tecniche e gli approcci

che permettono di aumentare la consapevolezza di ciò che caratterizza il team

distribuito, con lo scopo di rafforzare la fiducia e favorire la collaborazione tra

i membri del team stesso.

Questa tesi si focalizza in modo particolare su uno dei tanti scenari inclusi

nel concetto di Global Software Engineering, l’Open Source Software (OSS).

CONTENTS

Il concetto di software open source è definito esclusivamente sulla base della

libertà di esecuzione, analisi, modifica e distribuzione del software stesso, sia

nella sua versione originale, sia dopo avervi apportato modifiche.

Allo scopo di sviluppare e migliorare un prodotto open source, sono nec-

essarie delle competenze specifiche. Per questa ragione, i programmatori han-

no iniziato a riunirsi in comunità finalizzate a condividere codice e capacità.

Questo fenomeno ha avuto inizio agli albori dell’informatica, quando anche

l’uso di un computer richiedeva delle competenze nella programmazione. I

programmatori iniziarono cos̀ı a condividere informazioni e software, dando

vita ad una base di conoscenza comune. Con la crescita della rete Internet,

un numero sempre più elevato di sviluppatori ha abbracciato questa filosofia,

e le comunità open source si sono evolute, assumendo differenti strutture or-

ganizzative: dai piccoli team di programmatori amatoriali alle grandi e ben

organizzate comunità no-profit, dai gruppi di sviluppatori sponsorizzati da

aziende, fino alle comunità che coinvolgono uno o più produttori di software,

le cui strategie di business sono influenzate dalla scelta di adottare e sviluppare

applicazioni open source.

Molte di queste comunità coinvolgono sviluppatori che non hanno una

conoscenza personale reciproca e che, pur provenendo da paesi e culture pro-

fondamente diversi tra loro, cooperano a distanza in virtù del loro comune

interesse verso uno stesso progetto software. È perciò possibile affermare che

il concetto di Global Software Engineering, pur non essendo intrinsecamente

legato a quello di OSS, viene spesso applicato nello sviluppo di applicazioni

open source.

L’apertura che in genere caratterizza le comunità open source fa s̀ı che

le problematiche ad esse relative assumano connotazioni solo in parte sovrap-

ponibili a quelle relative ai progetti sviluppati secondo il modello GSE da parte

di compagnie che sviluppano software proprietario impiegando programmatori

localizzati in diversi paesi.

Ovviamente, la fiducia assume un ruolo diverso nei progetti GSE di tipo

proprietario e nei progetti open source. Mentre una software house tradizionale

con team distribuiti affronta solitamente problemi di fiducia tra i membri lo-

calizzati in diversi paesi, oppure quando utilizza subcontractors e modelli di

outsourcing, il problema più rilevante all’interno delle comunità open source

riguarda il rapporto con gli utenti esterni che sono interessati a entrare nella co-

x

CONTENTS

munità. Di conseguenza, alcuni elementi chiave che incoraggiano lo sviluppo di

prodotti open source sono rappresentati dal supporto fornito agli sviluppatori

che esprimono la volontà di contribuire al progetto e dall’incoraggiamento della

collaborazione tra comunità diverse, che possono beneficiare delle conoscenze

e capacità reciproche.

Molti progetti di software open source sono ospitati su piattaforme,

conosciute come software forge, le quali utilizzano Internet per offrire degli

strumenti che supportano lo sviluppo del codice e la comunicazione all’interno

della comunità. Lo scopo del nostro lavoro è quello di comprendere il proces-

so adottato dalle comunità che sviluppano progetti ospitati in una di queste

piattaforme, Allura, e di fornire alcuni tool per rafforzare la consapevolezza

all’interno della comunità stessa. Allura è a sua volta un progetto open source,

attualmente inserito nell’incubatore dell’Apache Software Foundation, e viene

utilizzato da SourceForge.net, uno dei più popolari project hosting providers,

il quale ospita 324.000 progetti, con una comunità di 3,4 milioni di utenti.

Precisamente, per comprendere le necessità della comunità è stato neces-

sario uno studio approfondito dei meccanismi di comunicazione e delle regole

che gli utenti adottano per poter contribuire ad un progetto. Inoltre è stato

realizzato un sondaggio rivolto a persone direttamente coinvolte nello svilup-

po di applicazioni open source, con l’obiettivo di individuare quali fossero le

informazioni rilevanti ai fini prefissati, definendo quindi le tipologie di dati

che i nuovi tool avrebbero dovuto raccogliere e rendere disponibili agli utenti

finali. Infine, è stata implementata un’estensione di Allura, chiamata TITANS,

costituita da un insieme di strumenti per permettere agli utenti della forge di

conoscere alcuni dati relativi alle comunità che sviluppano i progetti ospitati

dalla forge stessa e di accedere ad informazioni riguaranti le competenze, i

precedenti contributi e l’esperienza degli altri utenti che vi operano. La pro-

gettazione e implementazione di tali estensioni sono avvenute tramite la parte-

cipazione in prima persona alla comunità di sviluppatori che sostiene Allura,

consentendo cos̀ı di comprendere ulteriormente i processi e le dinamiche che

caratterizzano il mondo open source. Tali tool sono oggi incorporati in Allura.

xi

CONTENTS

Contributi

Questo lavoro include i seguenti contributi originali:

• Uno studio delle necessità di una comunità che sviluppa software open

source, riguardante i dati aggiuntivi di cui essa necessita per aumentare

la consapevolezza sul contributo e sull’esperienza degli utenti che vi

appartengono.

• Uno studio dei processi comunicativi e di gestione dei contributi forniti

dagli utenti che vengono adottati da comunità create con lo scopo di

produrre software open source.

• L’implementazione di quattro differenti tool che permettono di fornire

agli utenti di una forge alcuni dettagli sui progetti ospitati dalla forge

stessa e sugli altri utenti che vi operano, inclusi il coinvolgimento di

organizzazioni come aziende o università e le statistiche sul lavoro svolto

da un singolo utente o da una organizzazione.

• Una valutazione dell’impatto che i dati forniti dai tool implementati

hanno sulla consapevolezza all’interno di una comunità open source,

basata sull’analisi delle strutture latenti all’interno di organizzazioni che

sviluppano software.

• Alcune lezioni imparate attraverso la diretta partecipazione, prima come

sviluppatori e in seguito come committer, alla comunità di Allura

Apache.

Organizzazione

La tesi è cos̀ı organizzata:

• Nel capitolo 1 introduciamo lo scopo e gli obiettivi della tesi.

• Il capitolo 2 include un’analisi dello stato dell’arte relativamente ai con-

cetti di Global Software Engineering e di Open Source Software. Vengono

inoltre discussi gli strumenti e le tecniche che supportano attualmente la

consapevolezza in questi contesti e i meccanismi di coordinamento che

caratterizzano alcune tipologie di comunità open source.

xii

CONTENTS

• Nel capitolo 3 viene presentata l’analisi del problema, inclusa la raccolta

dei requisiti realizzata per mezzo di un sondaggio rivolto a persone che

partecipano a progetti open source. Inoltre viene esposto l’approccio al

problema descritto, soffermandosi sulle caratteristiche dei tool sviluppati

per rafforzare la consapevolezza in una forge open source.

• Nel capitolo 4 sono descritti nel dettaglio la struttura di Allura, ovvero

la forge all’interno della quale gli strumenti proposti sono stati realizzati,

e i processi di sviluppo solitamente addottati dalla comunità.

• Nel capitolo 5 viene spiegata la struttura dell’estensione implementata.

Questo capitolo include anche una descrizione delle procedure seguite

per introdurre le nuove funzionalità del software prodotto.

• Nel capitolo 6 vengono esposti i risultati delle valutazioni dei tool creati.

Tali valutazioni includono sia i giudizi raccolti dalla comunità che si

dedica allo sviluppo di Allura, sia un’analisi teorica relativa all’impat-

to dei dati raccolti nella determinazione delle tipologie di strutture

organizzative latenti che caratterizzano le comunità open source stesse.

• Infine, nel capitolo 7, sono riassunti i risultati raggiunti dal nostro lavoro

e vengono presentati gli sviluppi futuri dei tool implementati.

xiii

Chapter 1

Introduction

The development of software in a distributed context is receiving increasing

interest in recent years. This is mainly a consequence of the competitiveness

of today’s market, which results in the need for software companies to rapidly

develop their products, nevertheless maintaining high-quality standards and

reduced budgets. This approach in software development is known as Global

Software Engineering (GSE), although different terms with similar meanings

are also used for this purpose, like Distributed Software Development (DSD)

and Global Software Development (GSD).

Despite promising a rapid and cheap development of good-quality software,

this approach also generates several problems, related to organizational issues

and communication barriers, as well as to social and cultural differences among

the people involved [21].

One of the most important barriers among the members of a distributed

team is the lack of personal knowledge, which often results in a low level

of trust. Moreover, working in separated locations at different times makes it

difficult to monitor the global advancement of the project. Generally speaking,

increasing awareness of the abilities and interests of co-workers and of their

geographical location can reduce the impact of the two problems mentioned

above.

The main goal of this thesis is to investigate the approaches and techniques

that allow to increase the awareness within the members of distributed teams,

in order to enforce trust and foster better collaboration.

In particular, this thesis is focused on one of the many scenarios related to

Global Software Engineering, the Open Source Software (OSS). The concept

Introduction

of Open Source Software is based on the freedom to execute, study, modify

and redistribute the software itself and its derived versions.

In order to develop and improve a piece of software, specific capabilities

are needed. Therefore, communities of programmers collaborating to open

source projects have been created with the purpose of sharing skills and code.

This phenomenon started in the dawn of computer science, when program-

ming skills were required to use a computer. Programmers shared informa-

tion and software, contributing to the creation of a common knowledge base.

With the growth of the Internet, a higher number of developers embraced this

philosophy, and open source communities evolved, adopting multiple organi-

zational structures: from small teams of amateur programmers to big and

well-organized non-profit communities, from groups of developers sponsored

by other companies, to communities directly involving one or more for-profit

companies. The latter usually adapt their business strategies to take advantage

of the adoption and the development of open source software.

Many of these communities involve developers without any personal knowl-

edge, who live in different countries and whose cultures are deeply different.

These developers start working together as a consequence of their common

interest in a software project. Therefore, even if a piece of code is not required

to be developed in a global environment to be considered open source, it is

correct to state that a GSE approach is often adopted while developing open

source products.

Such communities, opened to any contribution, face problems which are

similar, but not the same, to those of a company that develops proprietary soft-

ware employing programmers located in different countries around the world.

Of course, trust plays a different role in open source and proprietary GSE.

While a closed company with distributed teams usually faces trust-related

issues among collaborating members located in different countries or when

dealing with subcontractors and outsourcing targets, for open source commu-

nities the most relevant problem concerns relationships with external users

who are interested in joining the community itself. Therefore, the key-element

which fosters the development of open source products consists of supporting

those developers and candidate developers who express the desire to contribute

in the project, as well as encouraging the reciprocal exchange among different

communities, which could benefit from each other’s knowledge and capabilities.

2

1.1 Original Contributions

Many OSS projects are hosted on platforms, known as software forges,

using the Internet to offer tools to support the code development and the

communication within the community. Another aim of our work is to study

the processes adopted by the communities developing projects hosted on one

of these platforms, Allura, and to provide some tools in support of the aware-

ness within these same communities. Allura is an open source project itself,

currently incubated at the Apache Software Foundation. It is adopted by one

of the most popular projects hosting providers, SourceForge.net, which hosts

324,000 projects, with a community of 3.4 million users.

More in details, an analysis of OSS communities has been deemed as nec-

essary to understand the needs of open source developers. This analysis was

focused on the rules and mechanisms adopted to manage internal communica-

tion and code contributions.

A study was also conducted on people directly involved in open source

projects, with the goal to elicit the most relevant data to be provided by the

new tools.

Finally, a set of additional tools for Allura, named TITANS, was imple-

mented, allowing the users of the forge to have a better understanding of each

other’s skills, background and contributions, and providing people interested

in projects hosted on the forge with data describing the community which is

developing the projects themselves. These tools were designed and developed

as part of the community which supports Allura and are now incorporated in

Allura itself. The interaction with the community was an additional opportu-

nity to study the processes adopted to develop an open source product.

1.1 Original Contributions

This work include the following original contributions:

• A study of the needs of a community developing open source software,

concerning the additional data they would need to increase their aware-

ness of the other users’ work, contribution and experience.

• A study of the processes adopted by open source software communities

to manage internal communication and users’ contributions.

3

Introduction

• The implementation of four different tools that provide the users of a

software forge with additional details about projects and users them-

selves. These details include statistics about each other’s work, devel-

opers’ personal data and explicit relationships between projects or users

and real-life organizations, such as companies or universities.

• An evaluation of the impact of data collected and provided by the imple-

mented tools on awareness in open source software development, based

on the analysis of latent organizational social structures.

• Some lessons learnt from the direct involvement, as developers and then

committers, in the Allura Apache community.

1.2 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 discusses the state of the art of Global Software Engineering

and Open Source Software, with particular attention to current tools and

techniques supporting awareness in these contexts. Coordination and

governance mechanisms adopted within particular kinds of open source

communities are also presented.

• Chapter 3 includes the analysis of the problem and describes the ap-

proach adopted to solve it. In particular, it introduces the tools designed

and developed to support awareness within an open source forge, and it

explains the process adopted to collect specific requirements for the fea-

tures to be provided by these tools. The analysis was based on a survey

conducted among people directly contributing to open source projects.

• Chapter 4 provides details about the original structure of the modified

software forge, Allura, together with an explanation of the usual devel-

opment process adopted within the community.

• Chapter 5 focuses on the implemented tools, describing their software

architecture and including details about provided functionalities. This

chapter also includes a description of the contribution process adopted

to introduce the new features of Allura.

4

1.2 Outline of the Thesis

• Chapter 6 includes an evaluation of the new tools. The evaluation was

obtained by gathering comments expressed by the community of devel-

opers contributing to Allura and by conducting a theoretical analysis of

the impact of provided data on the study of latent organizational social

structures within communities developing software.

• Finally, Chapter 7 summarizes the results of this work and describes

future work related to the presented tools and analysis.

5

Chapter 2

State of the Art

This chapter contains background information and the state of the art of Global

Software Engineering, Open Source Software and awareness support in these

development models. Moreover, it discusses the tools and the techniques that

actually support the awareness within these development models and the co-

ordination methods that some of the open source communities adopt.

Section 2.1 defines the concept of Global Software Engineering, describing

the context in which it is currently adopted and highlighting related benefits

and problems. Section 2.2 focuses on a specific GSE case of study, consisting

of the open source software development, introducing the most relevant ele-

ments characterizing this scenario. Coordination and governance mechanisms

adopted by open source software communities are presented in Section 2.3.

Finally, Section 2.4 describes existing awareness-related tools and work in the

contexts of Global Software Engineering and open source software develop-

ment.

2.1 Global Software Engineering

The term Global Software Development (GSD) can be defined as “software

work undertaken at geographically separated locations across national bound-

aries in a coordinated fashion involving real time and asynchronous interac-

tion” [35]. Global Software Engineering (GSE) is the business tactic that

consists of adopting a distributed development to take some advantages in

producing a software [40]. Despite this slight conceptual difference, the terms

State of the Art

Global Software Development and Globals Software Engineering are generally

used as interchangeable synonyms.

Companies started experimenting with remote collaboration among soft-

ware developers in the early 1990s, when they understood they needed to

reduce costs and to exploit skilled resources, even if located far from each other

[20]. The first Web-based system to support remote testing and validation of

software was developed in 1995 at Fujitsu Network Communication Systems

[12].

Since then, interest in Global Software Engineering has strongly increased,

especially in recent years. Better network technologies and the increasing speed

of globalization-related phenomena were enabling factors, but the most impor-

tant elements encouraging the adoption of a similar approach are economic,

political, organizational and strategic factors. Software companies need to

adopt fast development processes, in order to put their products on the mar-

ket earlier than their competitors, therefore they try to take advantage of the

round-the-clock development by having teams working in different timezones.

With a global approach, they are also able to hire programmers at a lower

expense, thanks to differences between labor cost across the world, and they

can easily look for the most skilled developers, regardless of their localiza-

tion. Moreover, companies developing products for a global audience may be

interested in enrolling developers culturally and geographically close to the

different targets of intended clients, therefore they may take advantage from

having teams in different countries. Finally, the structure of multinational

corporations can strongly encourage this choice, since adopting a distributed

development looks natural for a highly distributed company [7].

Despite these advantages, the adoption of a global approach still has several

side-effects which produced unsatisfactory results in many case studies. Addi-

tional costs due to communication, synchronization and travel needs are often

underestimated [43]. Empirical studies demonstrated that the development of

GSE projects is often slower than the development of co-located ones, and that

GSE projects are more likely to fail than traditional ones.

These issues have been also identified by Lori Kiel in her analysis of a

distributed development case of study, which resutled in a failure [25]. The

study involved an organization with four offices around the world, which de-

cided to distribute a single product development group in their Canadian and

8

2.1 Global Software Engineering

their German divisions. The study tried to identify the causes of the project

failure by interviewing developers and managers. The emerged failure factors

included:

• Time issues, related to the high difference in the time zones of the two

offices;

• Language, because of the choice of English as the adopted business lan-

guage;

• Culture, because people perceive, say and make things differently ac-

cording to their specific background;

• Power, because only one office was involved in decision making;

• Trust, since one of the offices was resistant to follow standards or to use

tools developed by the others.

Moreover, the team members used teleconference as the main means of com-

munication. Teleconference is usually powerful and effective, but in this case

the adoption of English as the common business language caused tensions for

almost all members. Furthermore, during the meetings, oriented to solve prob-

lems or to resolve disputes, people often raised their voices and spoke rapidly,

making it impossible for participants to follow or to fully participate in the

discussion. As a result of these issues, teleconference was replaced by asyn-

chronous communication, like e-mail messages. This choice was also fostered

by the lack of time, due to the time zones separation which allowed to have

only a few minutes a day in which both divisions were at work at the same

time. However, using e-mails to solve issues obviously increases resolution

time, and introduces misunderstanding problems.

Similar results were collected during the Distributed and Outsourced Soft-

ware Engineering project (DOSE) in 2010 [28]. In this project, teams of stu-

dents distributed in Europe, Asia and South America were required to develop

software through remote collaboration. Various means of communication were

adopted by team members. At the end of the project, a study on how geo-

graphical distribution affected the development process was conducted. The

analysis highlighted that chats and e-mails were the most adopted means of

9

State of the Art

communication. Due to language problems, calls were considered less effec-

tive, since some students were not fluent in English, which was used as the

common language, and different accents limited comprehension among partic-

ipants. Moreover, a relationship between geographic location and communica-

tion overhead emerged from the analysis, since higher volumes of e-mails were

registered in teams involving members with a higher geographic separation.

As shown in Figure 2.1, although the lack of a shared development infras-

tructure is one of the barriers in global development, failures in GSE are usually

unrelated or weakly related to technical issues. The most important problems

arising in this context are a consequence of social issues, which produce barriers

and misunderstandings among the members of the project.

In particular, significant obstacles in a global environment are often repre-

sented by cultural differences and physical distance. Having people with differ-

ent cultures working together means managing different patterns of thinking,

feeling and acting [21]. This results in different styles of communication, dif-

ferent organizational schemes and a different sense of time, producing relevant

issues in coordination and making it hard to share ideas within the team or to

build a shared vision among its members [19].

Figure 2.1: Most relevant issues in Global Software Development.

Time zone differences, language barriers and the impossibility of having

face-to-face meetings also result in the lack of communication. According to

a study conducted by Sangwan, Mullick and Bass to identify the key factors

for the success of Global Software Engineering, the absence of informal com-

munication between distributed teams is often underestimated [36]. Despite

of this, reduced communication results in a lack of trust among developers,

producing additional collaboration issues. Reducing ambiguity allows to solve

issues related to the lack of communication by avoiding different teams to base

10

2.1 Global Software Engineering

their work on different assumptions, and was therefore identified by Sangwan

et. al. as one of the critical success factors for GSE.

Other known barriers in GSE result from process and organizational issues,

which are more frequent when the development involves different organizations,

such as in projects based on the outsourcing paradigm. In order to overcome

these issues, Sangwan et al. identified the emphasization of requirement anal-

ysis as another critical success factor, which could be a valuable strategy to

obtain a stable development process and a deep understanding of dependen-

cies between the involved teams. The adopted process could benefit from the

emphasization of requirement analysis, facilitiating coordination and being

flexible enough to accommodate cultural differences, but also rigid enough to

allow progress monitoring [36].

Herbsleb also pointed out that most of the traditional tools adopted to

enforce the cooperation within a team can be applied to co-located teams only

[18]. In his work, he highlighted that, despite sharing contextual information

is a key-factor for the project coordination, in global teams there is often

little awareness of what’s happening somewhere else. Finally, according to

him, the differences between used tools, practices and habits could result in

incompatibilities between some of the involved locations.

Figure 2.2: Complexity and barriers in a GSE project [31].

Figure 2.2 summarizes the previously introduced problems: geographical,

linguistic and cultural distance, as well as timezone differences, introduces bar-

riers among the developers of a GSE project and produces a higher complexity

in the project management. Increasing communication, cooperation, visibility

and coordination within the global team lowers barriers and complexity in the

11

State of the Art

project. However, distance reduces the effectiveness of communication and co-

operation between remote teams, and has a negative impact on coordination

and visibility [31].

The previously mentioned studies led to the implementation of several

tools trying to reduce the communication barriers in a global context, allowing

to talk with remote colleagues in an easier and informal way. For example,

the Jazz project, sponsored by IBM, added instant messaging features to the

Eclipse Platform, together with other awareness tools allowing to see which

files are currently edited by other users [8]. Other tools focused on supporting

activities such as problem analysis, requirements elicitation and activity plan-

ning. Among those, the tool MasePlanner is an Eclipse plug-in with features

to simplify agile planning in a distributed context, allowing users to create

story cards shown in a common virtual workspace, which can be organized

and modified by project members to plan their activities [29].

2.2 Open Source Software

In 1986, Richard Stallman coined the first formal definition of Free Software,

according to which the key element for a piece of code for being “free” is

preserving four fundamental freedoms [5]:

1. The freedom to execute the code;

2. The freedom to study how the code works;

3. The freedom to redistribute the program to someone else;

4. The freedom to distribute modified versions of the original software.

Therefore, the term free wasn’t used by Stallman with the meaning of “free of

charge”. Instead, the term refers to the freedoms granted to the final users of

the software [15].

The expression Open Source Software (OSS) was later introduced to de-

scribe a very similar concept. Its official definition, provided by the Open

Source Initiative, states that a software is open source if it is compliant with

ten criteria [2]:

1. It should be possible to freely redistribute the software.

12

2.2 Open Source Software

2. The program must include its source code, which can be distributed as

it is or as a compiled form.

3. Everyone must be allowed to create modified versions of the software and

derived work, distributing it under the same terms.

4. In order to preserve the integrity of the author’s source code, derived

works may optionally be required to adopt a different name from the

original software.

5. The license must not discriminate against any person or group of persons.

6. The license must not discriminate against any field of endeavor.

7. The license must be redistributable to anyone without the need to obtain

an additional license by the original authors.

8. The license must not be restricted to a single product within which the

software can be used.

9. The license must not restrict other software to be used together with the

program.

10. The license must not restrict to the adoption of any particular technology.

The basic difference between these definitions is philosophical and ethical.

While the free software emphasizes freedom, the open source software high-

lights technical aspects such as the availability of the program’s source code

and the higher quality resulting from these approach.

According to Stallman, the concept of Open Source Software is slightly

weaker than the concept of free software [37]. Despite of this, the two terms

are often used as interchangeable and some authors consider them as synonyms

[15]. The similiarity of these two concepts also results from the comparison

of the licenses approved by the Open Source Initiative (OSI) and by the Free

Software Fundation (FSF): aside a very limited number of exceptions, the

licences falling under the terms prescribed by the OSI are also approved by

the FSF, and vice versa [13].

Many other similar terms have been later introduced. Among them, Free

Open Source Software (FOSS) and Free Libre Open Source Software (FLOSS)

13

State of the Art

aim at avoiding to take a stand in the debate on whether it is better to use the

term Free Software or Open Source Software. Moreover, Libre Software was

proposed as an alternative term for Free Software. This term has the same

meaning of Free Software, but it tries to avoid misunderstandings based on

the double meaning of the English-language word free by using the equivalent

word in French and Spanish. From now on, the term Open Source Software

will be used according to the definition provided by the Open Source Initiative.

The definitions of open source software and free software both identify a

very wide concept, which includes several different scenarios. Even if amateur

programmers play a relevant role in OSS, the stereotype of open source software

only consisting of programs developed by small groups of programmers in their

spare time is far from reality. Some open source projects are developed by a

single company, which later releases the source code allowing users to modify

and redistribute it. Many others are backed by large communities, directly or

indirectly supported by for-business companies. Moreover, there are several

cases of large and successful projects managed by non-profit organizations such

as the Apache Software Foundation [15].

The success of open source software has increased over time. Many govern-

ments also introduced policies to adopt open source software within the public

administration [44]. Products such as Mozilla Firefox, Linux and the Apache

HTTP Server demonstrate that open source software can reach a significant

market share, ensuring reliability, performances, scalability and security with

a lower total cost of ownership than their proprietary competitors [45, 27].

Aside quality-related advantages, which may vary from project to project,

some of the most important benefits deriving from the adoption of OSS are

related to the possibility to access the original code of the software itself. In

fact, this makes it possible to assess the security level of the application, as well

as to directly verify its quality. Moreover, by reading the program’s original

code, users are allowed to further test it with a white-box approach.

Another advantage comes from the freedom to distribute modified versions

of the original code. This allows to derive new products from an open source

application, by adding new features or by customizing it for a specific environ-

ment.

Additionally, several companies adapted their business strategies in order

to accumulate revenues from the development, the adoption and the redis-

14

2.2 Open Source Software

tribution of open source software, for example by selling related services or

products [15].

Besides the previously listed advantages, there are several problems related

to OSS, affecting both final users and developers. First of all, trust plays a

key role while selecting the software to be used for a certain purpose, and

people usually tend to consider it safer to adopt proprietary software. This

results from a different perception of the provided support. In a traditional

firm selling closed source products, it is often very easy to identify someone to

which complain about the problems related to the software, while open source

communities may be unable to quickly respond to the needs of the users, unless

their business strategies include a support service with fee. Recently, thanks

to the rising attention about open source, the most active OSS communities

started giving more attention to final users’ requests using tools like forums.

Moreover, bug fixing is now a trasparent activity, since the community ex-

hibits the lists of reported and solved bugs. In order to achieve transparency,

communities also publish their mailing list discussions related to the issues

discovered within the software they develop; the discussions are often open to

final users’ remarks.

Other issues often related to OSS are represented by partial documenta-

tion and by the lack of marketing campaigns. These problems mainly affect

projects developed by volunteers only, since their interest is usually focused

on technical aspects. To solve these problems, many communities decided to

develop their software using code forges, which attract more attention thanks

to the successful projects they host. Therefore, developers take advantage

of this fame to publicize their own product. Moreover, forges provide tools

like wikis, by means of which developers can present the description and the

features of their software.

The lack of documentation may also be related to tests. Usually, OSS prod-

ucts are very frequently tested by companies adopting the products themselves,

also as a consequence of the previously discussed lack of trust. Obviously, this

activity represents an expensive and time-consuming overhead, that is avoided

by the communities sharing the results of their previous tests through easily

accesible tools.

From the developers’ perspective, issues related to OSS mainly involve

communication, culture and awareness. While the definitions of Open Source

15

State of the Art

Software and Free Software do not force development to be global, the openness

of the OSS approach often results in communities involving several people,

companies and institutions located in different countries around the world.

Therefore, even if several counterexamples exist, OSS is often developed ac-

cording to the GSE model. As a consequence, most of the problems discussed

in Section 2.1 also affect OSS development.

2.3 Coordination within an OSS community

Another important aspect to be considered in OSS development concerns the

coordination and governance mechanisms adopted within the community itself.

Obviously, the policies adopted to manage a community have a strong impact

on the produced software, and they can mitigate or worsen the previously

listed problems. For example, specific rules defining the entrance process for

new community members are sometimes introduced to increase awareness of

each other’s goals and skills, resulting in better tasks assignment.

As briefly mentioned in Section 2.2, the wide range of existing communities

does not allow to identify a unique model representing the coordination process

adopted in the OSS development. Therefore, understanding the specific coor-

dination and governance model adopted in an open source project constitues

a critical element for developers, to asses whether to contribute or not to the

project, as well as for final users of the resulting application, since their trust

in the community may strongly vary according to the governance mechanism

underlying the software development.

The first studies about the governance in OSS communities were conducted

in the early 2000s. In 2003, Galoppini and Garzarelli identified three main

organizational categories [13]:

• Corporate projects, entirely developed within a single company and then

released as open source software.

• Voluntary projects, which are supported by volunteers only, offering their

efforts and resources without being remunerated for that.

• Hybrid projects, jointly developed by volunteers and employers working

for the company which runs the project itself.

16

2.3 Coordination within an OSS community

Figure 2.3: Power distribution among centers of power [30].

The coordination mechanisms adopted to manage a corporate project can be

described by the traditional software engineering approach, also applied to

develop proprietary software [9]. Hybrid projects, even if they also exploit

volunteer programmers, are based on similar mechanisms, since they rely on a

group of remunerated developers who take on the responsibility of those tasks

which are not completed by volunteers [13]. According to German, remuner-

ated programmers usually perform tasks including coordination activities, bug

fixing and testing, they produce documentation and they are responsible for

the software design, since volunteers usually prefer to be involved in writing

code instead of dealing with this kind of related tasks [14].

Even considering similar communities, it is still possible to identify differ-

ences in the governance practices they follow. Prattico considered six commu-

nities supported by active open source foundations: Apache, Eclipse, GNOME,

Plone, Python and SPI [30]. Using computer-aided text analysis of each foun-

dation’s bylaws, he noted that, although each foundation adopted different

terms, it was possible to identify three common main power centers: the

members of the community, the board of directors and the chairman of the

community. For example, the chairman of the community can be named by

the board of directors, as in the Eclipse foundation, or elected by the members,

as in the Debian project. The board of directors is composed by people elected

by the members and that take decisions about the piece of software they are

in charge of. The communities showed a different distribution of power. For

example, in the Eclipse Software Foundation power is mostly managed by the

17

State of the Art

chairman, while in the Apache Software Foundation the board of directors and

the members exert the most power, with an inclination towards the board of

directors.

The diagram in Figure 2.3 represents the results of the study conducted

by Prattico. The closer the names of a foundation and a power center are,

the stronger the power of the center itself is within projects supported by the

considered foundation.

The approach adopted to develop voluntary projects is completely different

from the development of proprietary software. The whole development of a

voluntary projects is based on community efforts resulting from factors like self-

motivation, mainly fostered by learning purposes, desire to share knowledge

and willing to cooperate with others in a different way [15]. In that case, de-

velopment is really global, and developers do not have any formal commitment

with the other members of the community [9].

An example of voluntary project is represented by Debian,1 a completely

free operating system launched in 1993 by Ian Murdock. One of the most

relevant characteristics of the organization model adopted by the Debian com-

munity consists in the adoption of the Debian Social Contract, a document

listing the moral rules and the values at the basis of the project itself. The

Debian Social Contract also includes the Debian Free Software Guidelines,

allowing to distinguish between free software and non-free software [34].

Non-developers are allowed to contribute to the project in several ways,

such as by translating or improving documentation or by submitting code

patches. In order to directly contribute as a developer, an applicant, namely

someone who aspires to be a Debian developer, needs to follow a formal pro-

cedure, supervised by an Application Manager. The New Members Procedure

includes seven steps: application, identification, philosophy and procedures,

tasks and skills, recommendation, Front Desk check, Debian Account Man-

ager check, and account creation. The first steps aim at checking the applicant

identity, knowledge, goals and skills. In particular, the applicant’s knowledge

and acceptance of the project’s rules, procedures and philosophy, including

the Debian Social Contract, are tested. Moreover, the applicant should work

out the tasks to be performed as a Debian developer, and the Application

1http://www.debian.org/

18

2.3 Coordination within an OSS community

Manager should test the required skills. In the last steps, the Application

Manager writes a report including the results of the tests conducted on the

applicant’s skills and knowledge. Finally, required documents are submitted

and, after checking them, the new member’s account is created [4].

The coordination mechanisms within the Debian Project are defined within

another formal document, the Debian Constitution. The governance structure

is hierarchical and includes different roles, such as the Project Leader, annually

elected by developers, the Technical Committee, mainly responsible for tech-

nical issues or problems related to overlapping responsibilities, and developers,

managing the packages they are in charge of [3, 13, 34].

Moreover, the organization of the Debian Project can be defined as mod-

ular. Software development has became a complex activity and has now to

cope with works of big dimensions. Applications are now often organized in

modules, each of which can be modified and updated independently to the

others, provided that the interfaces between different modules are kept intact.

Modularity offers re-usable and compatible software, that can be extended and

developed in an easier way. For this reason, the Debian Project exploits mod-

ularity, fostering software innovation and allowing all the developers, including

external ones, to converge in the application’s production process. Despite the

fact that modularity allows to divide the work, it is in fact essential to coordi-

nate all developers’ activities. Consequently, big size projects, as the Debian

Project itself, adopt hierarchy as a mean to manage innovation ensuring at

the same time product integrity and modular compatibility. According to

Galoppini and Garzarelli, hierarchy in OSS communities has been introduced

because of the need to balance the number of contributors and the number of

software contributions accepted [13].

The high rate of software transformation leads to systematic innovations,

requiring simultaneous changes in the production process. The significant un-

certainty arising by these innovations favor the so-called hierarchy of authority.

This kind of hierarchy, based on the concept of charismatic authority, coexists

with the ones defined by the bylaws: the leader’s power is recognized by others

on the basis of his or her outstanding personal qualities or ideas and intuition,

that allow him or her to achieve extraordinary results. These charismatic pro-

grammers, whose reputation inspires devotion, trust and obedience, can guide

the production process in such situations of uncommon flux, since when it is

19

State of the Art

necessary to rapidly take a complex decision they can go beyond the complex

set of rules, being followed by the other programmers and allowing to proceed

with smoothened decisional conflicts and reduced coordination costs [13].

2.4 Awareness in a distributed context

Generally speaking, situation awareness simply means “knowing what is going

on” [11]. Others defined the concept of awareness as “an understanding of the

activities of others, which provides a context for your own activity” [10]. In

particular, in the field of software engineering, awareness is knowing who is

working on the project, which tasks have been assigned to each member of the

project, what they’ve done so far, what they’re doing now, and being able to

identify who has the expertise best matching a particular need [6].

As mentioned in Sections 2.1 and 2.2, awareness meets several additional

barriers in a distributed context, due to the distance and the lack of com-

munication between the involved programmers. People don’t share the same

physical workspace, so it is easy to ignore their observations and devalue their

contributions and abilities given their absence. Moreover, the possible exclu-

sion of part of them from the context in which decisions are taken and the

consequent lack in knowledge of the detailed reasoning underlying a decision,

lead to dismiss apparently bad choices even if everyone recognizes the ability

of their colleagues. Furthermore, the programmers don’t have any personal

contact or knowledge, therefore they do not have informal communication

with each other, preventing a trustful, respectful and cooperative atmosphere.

Besides, due to different time zones, the communication can happen mainly in

an asynchronous way, since the different teams or programmers work in differ-

ent moments in time. The lack of informal and synchronous communication

has proved to constitute a serious problem for the success of some projects

developed in distributed contexts. By the way, awareness is a key factor for

the success also of co-located projects, since it has a strong impact on the

coordination and the communication between the involved members. A lack

of awareness could result in wrong assumptions on someone else’s work, leading

to misunderstandings, delays in the software development or even to the failure

of the whole project. So, how is it possible to ensure a deep understanding of

what’s going on, especially in a different location?

20

2.4 Awareness in a distributed context

Besides the work presented in Section 2.1, mainly focused on communica-

tion, several other studies, more focused on awareness in projects developed in

a global environment, have been conducted in recent years.

For example, Kobylinski et al. proposed an awareness system based on

issues and artifacts monitoring, which gathers information about developers’

activities and allows each user to filter awareness information by rating the

importance of single artifacts. In particular, the tools adopted to support the

software development generate events which are later sent as notifications to

interested users only [26].

Another proposed tool, known as Social Network Analysis, has the goal to

show social relationships within a group, which are usually implicit, especially

in a distributed context. In order to do so, the tool gathers data about social

relationships through a survey and represents them by means of simple graphs

[6].

A frequently used tool to support Global Software Development is the agile

and incremental framework Scrum, originally designed for collocated teams.

Scrum is a project management approach, which is based on increments, lasting

for 2-4 weeks each, known as Sprints. Each sprint starts with a planning

meeting, which lasts up to 4 hours and aims at developing a detailed plan for

the whole increment. During the sprint, the team has daily meetings, lasting

up to 15 minutes, during which each member explains what he or she did

during the previous day, the planned activity of the day, and lists possible

impediments against it. The sprint ends with a review meeting, a 4 hour

long meeting attended by all the stakeholders of the project, during which the

status of the business, the market and technology is checked [23].

In 2009, after some successful experiments, this approach was formalized as

a tool to support Global Software Development, later becoming very popular

in this context [23, 40]. According to some reports, experience suggests that

Scrum practices help to overcome time and spacial barriers in a distributed

context, increasing collaboration and trust within the team and helping the

understanding of hidden problems [16]. In particular, Scrum practices are

adapted to a global context, for example by implementing both a local Scrum

and a global Scrum. Meetings among different teams are shorter and less

frequent, in order to reduce problems due to the lack of overlapped working

time. Moreover, they only involve Scrum Masters, namely the technical lead

21

State of the Art

or the design architect from each local team [23]. Therefore, this mechanism,

based on a hierarchical structure, allows to effectively propagate awareness

within a distributed context [40].

An Agile Service Networks-based model has been recently proposed as an

alternative to Scrum. An Agile Service Network (ASN) is a network of ser-

vice oriented applications involving several industrial parties and collaborat-

ing through agile transactions to achieve a common goal [39]. According to

Tamburri, ASNs can be used to model distributed teams. This model results

in a pro-active network, automatically delivering relevant information to local

teams. More in details, each local team is represented by a node of the network,

while links connecting nodes represent affinities like tasks sharing or depen-

dencies between nodes. According to the proposed model, messages propagate

from one node to its neighbors until they reach their destination. That way,

status information propagates to all the involved participants. Simulations

have been used to demonstrate that this model could theoretically be adopted

to support awareness within a global environment [40].

A different perspective has been adopted by other studies, which focused

on open source software projects developed in a global context. As discussed

in Section 2.2, most of the GSE-related issues also affect this kind of Open

Source projects, which are developed by communities involving people located

in several different countries and time zones.

Usually, communication within a team developing an open source applica-

tion is supported by mailing lists and Web-based tools like forums and wikis.

Contributions are shared by means of Concurrent Versions Systems (CVSs) or

Distributed Version Control Systems (DVCSs), like Subversion or Git, which

provide versioning features, allowing to easily check or revert someone else’s

contributions. Moreover, tracking systems are used by the community itself

and by external users to report bugs or other problems and to ask for the

development of new features.

In order to try to overcome some of the communication problems, both

within the community and with external users, some projects have been devel-

oped to extract information from these tools. For example, the SeCold portal

adopts mining techniques to build a shared knowledge base about several open

source projects, including explicit facts like code content and statements, as

well as implicit data, such as the adopted license and the number of clones

22

2.4 Awareness in a distributed context

Figure 2.4: Conceptual architecture of the tool ALERT.

produced from a project [24]. In other studies, mining techniques are used to

extract patterns to represent and improve the decision process adopted in soft-

ware development [17]. Obviously, mining techniques can be applied both to

open source projects and to closed source projects, but they have been mainly

used in the open source context, where the original code is freely available to

everyone.

Mining techniques have been also adopted by the research group Libresoft

at the University Rey Juan Carlos. In that case, some tools were developed,

with the purpose to increase awareness within the community developing a

certain project. More in details, the tools proposed by Libresoft mine data

extracted from code repositories, maling-list discussions and tracking systems

[33].

The project ALERT,2 which is currently under development, has the goal

to improve coordination in an open source community by implementing an

interaction highway, which increases awareness by gathering and linking re-

lated information obtained from the different tools adopted by the community,

including structured and unstructured sources.

Ontologies have also been defined to represent dependencies between com-

munity members and their interactions. The software tool is therefore intended

to use this information to build personalized, real-time and context-aware no-

2http://www.alert-project.eu/

23

State of the Art

tifications, to detect duplicate bug reports and to automatically assign bugs

to developers [38, 1]. As shown in Figure 2.4, users are also allowed to send

complex subscriptions, receiving the appropriate answers from the system.

2.5 Discussion

The analysis of the state of the art on open source software and global software

engineering highlights that the ambitious promises of similar approaches have

not been totally achieved yet. Studies conducted on awareness in distributed

contexts allow to positively address some of the issues related to global devel-

opment. Effective approaches such as Scrum have been introduced to manage

GSE projects, and other approaches to spread awareness, such as ASNs-based

models, have been proposed. Notification systems based on artifacts collection

and mining techniques have been designed or are under construction to sup-

port awareness within a certain project by sending customized messages and

by filtering relevant events only.

However, provided tools and conducted studies still provide little support to

the awareness of the composition of a community working on a certain project.

Social Networks Analysis only focuses on relationships among developers and

is based on questionnaires to be answered by users, which are often reluctant

to fill them. Despite this, our analysis makes it clear that social issues are very

relevant in a distributed context and that having a basic knowledge about

the culture, habits, experience and skills of teammates is a relevant element

to increase communication effectiveness and to introduce good coordination

mechanisms.

As discussed in Sections 2.1 and 2.2, this holds both for GSE projects

developed in a closed context and for OSS projects involving developers from

different locations. In particular, members of OSS communities may have even

less common elements, since they differ not only with respect to their origins,

cultures, backgrounds, experiences and skills, but they may also belong to

different organizations. In other words, they simply happen to contribute to

the same project for a certain amount of time, and they don’t have any formal

commitment binding them to the project itself.

Members of the community usually don’t know anything about each other.

We believe that making this data explicit would be useful to foster collabora-

24

2.5 Discussion

tion within a project, allowing to effectively assign tasks, to understand when

each other is going to work on a certain project and to elicit potential commu-

nication barriers resulting from different cultures or languages. Nonetheless,

an explicit representation of skills and experience would enable to pro-actively

involve potentially interested developers.

Moreover, in Section 2.2 the key-role of trust within open source software

projects has been discussed, highlighting its relevance in the relationship be-

tween community members and the external world. Despite of this, existing

tools and studies do not focus on this aspect. Therefore, our work aims at

fostering trust by enhancing transparency of who is working on each single

project, by providing external users with information about the involved orga-

nizations, as well as by giving them details about the real skills, capabilities and

experience of the members of the community. That way, external communities

and developers can better evaluate whether to join a project or not, based on

a detailed knowledge of the community which is developing it.

25

Chapter 3

Problem Analysis

This chapter shows our analysis of the issues exposed in Chapter 2 and the

approach we decided to adopt in order to support open source software de-

velopers to overcome some of them. Section 3.1 focuses on the analysis of

the problem, introducing the approach adopted to solve it and explaining the

underlying motivations. A survey was also conducted with the aim of verifying

and refining the requirements produced by the previous analysis. The structure

of the survey, its intended audience and purposes are discussed in Section 3.2,

also including an analysis of collected results and introducing its impact on

the proposed approach.

3.1 Identification of needs from the state of

the art analysis

While analyzing the problem of awareness in Global Software Engineering,

we decided to focus on the open source context, studying, designing and im-

plementing some tools in support of communities including developers from

different locations around the world.

The proposed approach to the solution is based on the idea of allowing

people to overcome their respective knowledge barrier when they start partic-

ipating to the development of open source software. As previously discussed,

open source communities often include members with a different culture, ex-

perience and background. Not knowing these details about a user results in

a low understanding of how each member can contribute to the project. On

Problem Analysis

the other side, being aware of similar details could represent a key-factor in

allowing the creation of teams including people with the right skills and expe-

rience to develop a high-quality project. These user data allow to create links

between team members, decreasing their personal distance perception, and it

positive affects the cohesion of the development team.

In particular, in order to enable developers to easily access awareness-

related information, our approach consists of including details about the com-

munity working on open source projects within the same platforms adopted to

develop them, known as software forges.

From an analysis on existing forges, the lack of similar tools emerged. When

we started our study, none of the most popular forges, such as SourceForge,

GoogleCode and GitHub, included explicit support for organizations contribut-

ing to hosted projects. This lack introduces a barrier against awareness of

what kind of community is developing a certain open source application. As

discussed in Section 2.2 and Section 2.3, a wide range of different open source

communities exists, and each of them adopts different coordination mecha-

nisms. Making it explicit and easily visible whether a project is developed by

a single for-business firm, is backed by a non-profit foundation, is sponsored by

different companies, results from the collaboration of different software com-

panies or is simply developed by a small group of amateur programmers would

therefore have a very strong impact on understanding the policies adopted

within the community to manage communication, coordination and gover-

nance. In turn, this would reduce the effort and the amount of time needed

by new members to familiarize with these policies. Developers that get used

to cooperate with a specific kind of community and to deal with its policies

can easily and immediately understand if establishing a collaboration with a

community could be successful for both parts.

Moreover, fostering trust between the community developing a software

product and its final users emerged as a key element for OSS success during

the analysis of the state of the art exposed in Section 2.2. The involvement

of established organizations or the support of foundations with a good reputa-

tion positively affects trust. Therefore, we believe that introducing an explicit

representation of organizations within a software forge allows to enhance vis-

ibility of the fact that some products are developed by trusted professionals,

reducing the fear of a possible lack of capability to respond to issues related

28

3.1 Identification of needs from the state of the art analysis

to the software itself.

On the other hand, small or emerging organizations working on good-

quality projects would increase their visibility on the forge, and this would

result in a stronger interest about the software developed by these organiza-

tions.

The analysis of the existing forges also highlighted the availability of a

reduced set of information about developers. Personal profiles usually don’t

include information such as the time zone in which users live and their usual

working time on the forge. In most of the cases, it is not possible to add

personal contacts or to list the skills of each developer. Allowing to optionally

include personal details and contacts would further increase transparency on

the forge and would give additional tools to interact with the community,

reducing once again the issues of fear against real availability of developers.

Introducing a mechanism to self-assess skills would also represent a starting

point for enabling a matching system between the needs of projects and the

interests of developers.

During the analysis of the state of the art, the need to demonstrate that an

open source community is very active also emerged. Therefore, we considered

gathering data about users’ and organizations’ contributions as another way to

increase awareness of each actor’s experience, as well as to foster trust in their

commitment. In particular, statistics about users’ and organizations’ contribu-

tions allow to quantitatively assess their efforts. Splitting contributions with

respect to the field characterizing each single project would also result in an

implicit and automatic tool to elicit an actor’s interest in certain topics and

the actor’s accumulated experience in each of them.

This data, together with the already mentioned self-assessment of users’

skills, could also be useful in reducing the complexity of entrance mechanisms

within an open source community. In fact, this would allow to reduce the efforts

to evaluate the technical skills of those users who have a strong experience on

similar projects, therefore fostering collaboration among the actors working on

the forge.

Finally, our approach aims at increasing transparency by allowing to as-

sociate each user of the forge with the organizations he or she is working

for. Despite some developers may prefer not to show their association with a

specific organization, we believe that providing users of the forge with similar

29

Problem Analysis

data would allow to better know a developer’s background, resulting in a better

understanding of the community.

In particular, some users may reject this mechanism, as a consequence of

their belief that a similar information could have an impact on the relationship

with other members of the community, leading to pressures related to the

organization which a developer is working for. Despite of such resistance, we

assert that the members of the community would benefit from this, because

they would be able to better coordinate themselves, while external users of the

software would be aware of who is really producing the applications they are

using or they plan to adopt.

In conclusion, the most relevant requirements gathered from this analysis

can be summarized as follows:

• Increasing the number of available personal details about developers,

making them visible to anyone else.

• Making explicit which organizations are involved within the community

and which users are part of them.

• Providing a quantitative estimation of users’ and organizations’ contri-

butions to open source projects.

More in details, we decided to implement this features on one of the existing

forges, Allura, the software on which the popular Web-based system Source-

Forge is based. This forge, which is described in details in Chapter 4, is an

open source project with a worldwide audience, providing a complete set of

development tools. This decision was also a consequence of the strong inter-

est demonstrated by the Allura development team, which was very open to

our proposal to introduce tools aimed at increasing awareness within hosted

projects.

3.2 Survey

In order to develop a better understanding of the scope of our work and to

elicit the requirements of open source software communities, a survey was

conducted among open source programmers. The main goal of the survey

was to understand whether the proposed approach was well-received or not by

30

3.2 Survey

communities, and to better define the relevant data to be collected and shown

within a software forge.

3.2.1 The questionnaire

The questionnaire adopted to conduct our survey was composed of 24 ques-

tions. The questionnaire was divided into four different sections:

• The first section of the questionnaire included 8 questions aimed at pro-

viding some information about the background of the interviewee. In

particular, we asked about how long the interviewee had been working

in open source, when was the last time he or she had contributed to an

open source project, what kind of organization he was working for and,

if any, what was his or her role within the organization and how long

he or she had been working for it. Finally, this section included some

additional questions about the organization itself, focused on its size,

the developed software categories and the geographic areas in which its

teams were located.

• The second section of the questionnaire, composed of 7 questions, was

only applicable to those interviewee which declared to operate as a mem-

ber of an organization. This section was related to the management of

collaborations and partnerships aimed at developing software projects.

After asking whether the interviewee’s organization was collaborating

with any other company, foundation, institution, community or free-

lance programmer, we asked, in case of positive answer, additional details

about the relevant factors in building such collaborations. In particular,

we asked to evaluate which elements were considered to be more rele-

vant to select the organization’s partners, which ones were the goals of

the collaboration itself, whether the collaboration was managed as an

outsourcing relationship or a peer-to-peer cooperation, and whether de-

velopment teams included members from different organizations or not.

Finally, the last two questions of this section were aimed at identifying

the reasons leading the interviewee’s company to operate in the open

source software field and at understanding if particular policies were

adopted in the selection of open source products.

31

Problem Analysis

• The third section of the questionnaire, including 8 questions, had the

goal to understand the most relevant data about users of a forge to

be collected and displayed to other members of the community, and to

evaluate the acceptance of showing such data to other people working on

the same forge. In particular, we asked the interviewee to evaluate the

importance of several elements:

– the explicit association of developers with the organizations they

belong to;

– some potential details to be included in the profile of an organiza-

tion;

– some potential indicators about skills and previous experiences of

users and organizations;

– some potential metrics to be collected in order to evaluate expe-

rience and skills of single users and organizations working on the

forge.

Moreover, we asked whether the interviewee would trust a mechanism

collecting statistics on previous work developed by users and organiza-

tions, and if he or she would like this data about himself or herself to be

available to anyone else on the forge.

• Finally, the fourth section of the questionnaire included one question

only, allowing the interviewee to add open comments as free text.

The complete list of questions composing the questionnaire is provided in Ap-

pendix A, together with detailed results of the survey.

3.2.2 Background of the respondents

Starting from July 2012, we distributed the link to our questionnaire through

different means of communication.

We posted it in the mailing list of an open source community, we sent it to

people participating as lecturer or students to a summer school on the topic

of open source software, and we linked it within an online group of Computer

Engineering students, asking those of them who had previously participated

32

3.2 Survey

Figure 3.1: Survey results. Background of survey respondents.

in open source projects to answer our questions. This allowed us to collect

50 answers among open source developers and members of companies directly

dealing with open source products.

The techniques adopted to distribute the survey resulted in a set of re-

spondents biased on certain groups of developers. As shown in Figure 3.1,

46% of the interviewees were operating in open source as students, teachers or

researchers from a university or another education institution. Employees of

for-profit businesses represented 26% of the survey respondents, while freelance

programmers and members of non-profit organizations were 22% and 4% of the

interviewees, respectively.

From these data, we can conlude that the strong propensity of developers

from the academic-world to answer our questions could influence the results of

our survey, since they represent a significant portion of the considered sample.

However, the dataset also includes many respondents belonging to companies,

33

Problem Analysis

which allow us to understand their point of view about organizations’ profiles.

A significant fraction of respondents is composed of independent developers.

Therefore, it seems that the sample is sufficiently heterogeneous, thus mixing

different perspectives and providing valuable information about the considered

aspects.

Almost two-thirds of participants (62%) had been participating in open

source projects for less than 3 years. This figure was influenced by the fact

that participants from education institutions, which represented the majority

of the sample, had recently began being involved in this field. However, more

than one third of the subjects answering the questionnaire (38%) had been

participating in open source projects for more than three years. This sample

then collected ideas both of people who had seen the evolution of the needs

of the forge and of the open source world and those of people who had just

started working in this context.

Figure 3.2: Survey results. Roles of survey respondents within their organiza-
tions.

We also asked when the last development experience dated back to, in order

to understand if the answers were referred to current experiences. As it can

34

3.2 Survey

be observed, one third of participants had contributed for the last time to the

development of an open source project less than a month ago, and a half of

them less than six months ago. It can be concluded that the results of the

questionnaire are not affected by experiences too apart in time.

Figure 3.2 highlights roles covered by interviewees within their organiza-

tions. As shown by the diagrams, most of the members of software firms or

foundations who answered our questionnaire were developers, while 61% of

the respondents from education institutions were students who contributed to

open source projects for their individual interests or during their studies.

The resulting sample is focused on a profile of participants chacarterized by

technical knowledge and capability. In fact, almost the totality of interviewees

is composed of developers, professors and students. This profile corresponds

to that of people interested in the tools we have introduced.

The survey involved people from organizations of different sizes, and most

of the interviewees had been working for their employers for less than three

years when they answered our questions.

These results confirm the sample heterogeneity. Members working in orga-

nizations of different sizes allow us to collect various points of view about the

many aspects we considered.

Figure 3.3: Survey results. Size of the organizations of interviewees and dura-
tion of respondent’s involvement within them.

Details about the fields in which interviewees’ organizations were focused

when they received our questionnaire are provided by the first diagram in Fig-

35

Problem Analysis

Figure 3.4: Survey results. Background of organizations in which interviewees
operate.

ure 3.4. Although our work was not related to the type of software produced,

but to the development process, regardless of its purpose, we notice the wide

range of represented product categories.

Figure 3.4 also highlights that the means of distribution of the survey

led to the establishment of a sample mostly composed of people working in

Europe and North America. This geographical concentration could influence

the results of the analysis. However, many interviewees also collaborated with

others in different continents, thus making their answers valuable sources to

gather data about developers’ experience in GSE projects.

Through our survey, we also wanted to investigate the kind of partnerships

that are implemented by organizations. Among respondents who were not

36

3.2 Survey

operating in open source communities as individual developers, about 44%

declared that their organizations were collaborating both with freelance pro-

grammers and with other organizations. We also observed that more than

three quarters of the organizations cooperate either with other organizations

or with individuals. This confirms the high rate of exchanges of ideas and

experiences that characterizes the open source context.

3.2.3 Results concerning management of collaborations

and partnerships

The results of the second section of the questionnaire allowed us to understand

that collaboration within open source projects is a very important element.

Interviewees were asked to evaluate the relevance of some elements in se-

lecting their collaborators. The proposed elements were the frequency of con-

tributions, the amount of experience in open source projects, the success and

the topics of previous projects in which candidate collaborators have been

working in the past. Collected results are listed in Figure 3.5, which highlights

that all the four elements were rated at least as quite important by more than

a half of the survey respondents. In particular, it can be observed that a very

high importance is recognized to previous participations in similiar projects.

Other considered aspects are the number of projects in which the other party

has participated, the popularity of the software product and the contribution

frequency, even if with less emphasis.

A wide majority of interviewees claimed that the goal of their collaborations

was both to take advantage of collaborator’s specific skills and to reduce their

individual effort. Projects involving members from different organizations are

managed in several different ways, and it did not emerge any predominant

choice: some projects are developed by a unique team, some communities

include a different team for each organization, and others are composed of

inter-organization teams.

These results suggest that the development of open source projects is usu-

ally based on partnerships, with the aim of reducing the individual effort and

of obtaining benefits from the particular skills or expertise of the partners. Al-

most all of the responses emphasize the latter, showing coherence with the fact

that the previous experience, in projects similar to the one being developed, is

37

Problem Analysis

Figure 3.5: Survey results. Elements considered while selecting collaborators.

considered of great importance. This also confirms the fact that open source

projects are the perfect platform to exchange ideas related to technological

standards.

With regard to the kind of established cooperation, it is clear that the rela-

tionship between the partners is usually equal. In fact, 64% of the participants

to the survey claimed that their collaborations are based on a peer-to-peer ba-

sis, but outsourcing-based collaborations are sometimes adopted. Instead, for

what concerns the establishment of the team, it has been shown that any choice

can be adopted: all the proposed anwers have almost the same percentage of

responses.

We also asked what are the reasons behind the use of open source software

38

3.2 Survey

Figure 3.6: Survey results. Collaborations within open source communities.

in the organization where the participant works or has been working. The

availability of the code was regarded as the most important element driving the

choice to adopt open source software, while cheapness of open source software

was deemed as an important element by 56% of the survey respondents.

However, it is interesting to note that, beyond these traditional motivations,

the community that is developing a product is considered of great importance,

since 62% of the interviewees declared it influences the selection of open source

software.

Despite of this, more than a half of the people who answered the question-

naire admitted that their companies do not have any specific policy about in-

teroperability with open source communities. Detailed results collected about

policies related to open source software within organizations are listed in Figure

3.7.

3.2.4 Results about organizations and developers’ pro-

file details

This section of the questionnaire was answered by all respondents. More than

a half of the people who answered our questionnaire (54%) considered it impor-

tant or very important to show a specific association between an organization

and its members and to include more details about developers working on

39

Problem Analysis

Figure 3.7: Survey results. Open source-related policies.

an open source software forge, while only 24% of the respondents think it is

unnecessary to include information related to organizations.

People who considered it useful to include additional details about users

and organizations were also asked to provide more details about the kind of

data they would like to receive. Collected results indicate a certain interest

with respect to several kinds of information about organizations. All the pro-

posed aspects were rated as important. About a half of respondents stated that

it would be useful to show the list of projects in which a single organization is

involved. Other details about an organization which were deemed as important

included its contact information, a description of its activity and the working

areas in which the organization operates. Developers show less interest in the

size of the organization, probably because it does not affect the development

process and the relationship with other developers, since it is often unrelated

to the size of a single team. Detailed results are represented in Figure 3.8.

Respondents were also asked whether they would be interested in details

about skills and experience of single individuals and organizations developing

open source products, and a wide majority of them regarded this data as

important or very important, as shown in Figure 3.9. More than 60% of them

also claimed they would consider automatically collected statistics as a reliable

or quite reliable measurement. These results highlight the strong demand for

tools that collect and publish data about the skills and the experience gained in

the forge, with regard to users and organizations, and the trust the developers

would put in them.

40

3.2 Survey

Figure 3.8: Survey results. Relevance of single details about organizations
developing open source software.

Figure 3.9: Survey results. Relevance of indicators about skills and experience
of organizations and developers.

41

Problem Analysis

About two thirds of interviewees would make it public statistics about their

past contributions. Among the metrics they deemed as most relevant to be

collected about a single developer, the most rated ones were the contributions

frequency, the number of assigned and solved bugs and the number of reported

bugs.

Finally, the details which emerged as the most important ones to evaluate

the reputation of an organization were the quality and success of its past

projects, the list of projects coordinated by the organization itself and a set of

aggregated figures of data acquired for its members. Detailed results listed in

Figure 3.10 suggest that all the metrics we proposed for users and organizations

were judged useful in order to represent their reputation.

Figure 3.10: Survey results. Relevance of single indicators about users and
organizations developing open source software.

42

3.3 Conclusions of the analysis

3.3 Conclusions of the analysis

Although the questionnaire was biased on certain kinds of developers, it al-

lowed us to gather important information about the needs of open source

communities. The survey highlighted that most open source projects involve

the collaboration of different organizations and programmers, and that differ-

ent kinds of relationships among collaborating actors can be adopted. The

usefulness of tools allowing to explicitly include information about involved

organizations also emerged from the survey.

Moreover, the survey confirmed that many people involved in open source

software are interested in receiving more details about developers, communities

and organizations contributing to OSS projects. Several proposed metrics were

well-received by survey respondents, confirming that software forges do not

allow people to have enough information about developers and communities.

Automatically collected statistics would be trusted by most developers, and a

wide majority of them would not fear making them available to anyone else.

In conclusion, the survey encouraged our approach, leading us to develop

tools to provide users of a software forge with data proposed within the pre-

viously exposed questions. In particular, the requirements gathered by means

of the survey are summarized in Table 3.1.

43

Problem Analysis

Area Requirements Priority

User profile

Including personal details about users High

Including the association between users and

existing organizations
High

Allowing users to self-assess their skills High

Including data about user’s contribution in

terms of submitted code to projects on the

forge

High

Including data about user’s contribution in

solving bugs within projects on the forge
High

User statistics

Including data about user’s contribution to

the communication within the forge

(reported bugs, posted messages, ...)

Medium

Including split data for each category of

projects or programming language
Medium

Including preferences of each user for specific

categories of projects
Medium

Including the concept of organization within

the forge
High

Including general details about registered

organizations (description, contacts, working

areas, ...)

High

Organization

profile

Including the list of projects developed by the

organization or to which it has contributed
High

Including the list of users of the forge

working for the organization, including their

roles

Medium

Including the list of the organization’s

previous partners
Low

Including details about the success of

developed projects
High

Organization

statistics

Including statistics obtained by aggregating

data for each organization member
Medium

Table 3.1: Functional requirements gathered by means of the survey.

44

Chapter 4

Allura Apache Podling

This chapter describes Allura Apache Podling, the open source project devel-

oping the software within which the proposed tools have been implemented.

In Section 4.1, the functionalities offered by the software are described and

the original structure of the code is explained, outlining its main components

and specifying the most relevant concepts of the overall organization of the

code. In Section 4.2, the procedures and the rules concerning the introduction

of new users within the community are explaned. Finally, in Section 4.3 the

process adopted within the community to develop the product and to discuss

features, bugs or changes is described, providing an example of the interaction

procedures of an open source community.

4.1 The Architecture of Allura

Allura1 is a software forge developed by an open source community. The

project is hosted on SourceForge, a Web-based system supporting the devel-

opment and distribution of open source applications, and the core software of

SourceForge consists of Allura itself.

The application was initially developed by GeekNet for the launch of

SourceForge, which started in 1999. In 2012, Allura was released for the first

time as an open source application, under the Apache License. The decision of

the company to release the code of a product they adopt for their commercial

purposes is mainly related to the attempt to take advantage of external innova-

1http://sourceforge.net/p/allura

Allura Apache Podling

tion. In fact, this allows external developers to build a community around the

product and to contribute to its growth by providing the code they develop,

for example, pursuing their personal interests or following academic purposes.

Therefore, the company can potentially benefit from both the contributions

and the ideas of the community, by receiving innovative pieces of code to be

adopted by the company itself, as well as useful hints driving the evolution of

the product.

The Allura project was submitted to be considered for entering the Apache

Software Foundation Incubator on 18 June 2012. The Incubator is a project

created in October 2002 which has the goal to allow an external project to

become an Apache Project. On 25 June 2012, Allura was officially incubated,

therefore becoming a podling, a term used to refer to the code and to the

community developing it while the project is under incubation.

As any other software forge, Allura allows programmers to create their

projects and it provides them with Source Code Management systems, a track-

ing system to manage bug fixing, and some tools supporting discussion within

the community developing the project itself. In particular, Allura supports the

revision control system SVN and the distributed revision control systems Git

and Mercurial. The administrator of each project can also select one or more

additional tools, including forums, wikis, blogs and discussions related to the

project itself. Another available extension allows to include links to external

websites about the project.

Figure 4.1: The external tools in Allura.

46

4.1 The Architecture of Allura

The application is therefore designed as a combination of tools, which can

be plugged into the core modules of the forge. The core modules of the forge

include basic functionalities like projects creation and users registration or

login. Each one of the additional tools provides an additional functionality for

a specific project, and it can be easily added to the project itself or removed

from it, according to the needs of the community which is developing it.

As shown in Figure 4.1, the forge also allows to create a group of projects

which are strongly related with each other. These groups are known as neigh-

borhoods on the forge.

Each project can be categorized by its administrators using the Trove sys-

tem.2 Trove is an open source project, released under the Creative Commons

Attribution 3.0 license, which attempts to establish a model to classify projects.

This model was defined as part of the Asset Description Metadata Schema for

Software (ADMS.SW), a project developed under the European Union’s ISA

Programme and aimed at defining a metadata vocabulary to describe software.

The ADMS.SW project started in January 2012, and version 1.0 was released in

June 2012. The defined taxonomies were later translated in several languages.

In particular, the Trove system covers several aspects, including:

• The topic of the developed project;

• The intended audience of the program;

• The license under which the application is released;

• The supported operating systems;

• The chosen user interface (or interfaces);

• The programming languages in which the original code is written;

• The natural languages in which the interface of the program is available;

• The development status.

Projects also include a mechanism allowing to manage permissions by means

of groups: the administrators of a project are allowed to add users to a specific

group, or to remove them from the group itself. Moreover, each group can be

2http://www.catb.org/˜esr/trove/

47

Allura Apache Podling

assigned a different set of permissions, thus allowing to easily and intuitively

control the actions that registered users are allowed to perform within the

project itself. By default, some groups are created, including a group for

anonymous users and one for registered users of the forge which have not

joined the considered project yet.

Particular projects are also used to host the user profile of registered con-

tributors. Therefore, every time a user registers to the forge, a new user project

is created, hosting his personal information. The user is also allowed to install

on his project any of the additional tools available within the forge.

All the artifacts available within the forge, like wiki pages or blog posts,

are managed through a versioning system, which allows to check the history

of the artifact itself.

The forge is written in Python, with some code fragments written in

JavaScript for client-side execution. The overall architecture is based on the

Model-View-Controller pattern. The view component is implemented using the

Jinja23 templating language, which allows to write dynamic Web-pages using

a Django-like syntax. The model component is represented by classes mapped

to a MongoDB database through the ming library. MongoDB4 is a document-

oriented DBMS. During the original design of Allura, MongoDB was chosen

instead of a relational database because of its flexibility and performance.

Thanks to the MongoDB Object Relational Mapping layer (ORM), which is

used within Allura, the DBMS also supports relations between collections.

Figure 4.2: The architecture of the Allura event-based system.

3http://jinja.pocoo.org/docs/
4http://www.mongodb.org/

48

4.1 The Architecture of Allura

As shown in Figure 4.2, the architecture of the platform also includes an

event system. Complex and time-consuming operations, like computing the

new tree of the repository after a commit event, are therefore performed as

asynchronous tasks by a daemon process.

The organization of the code is based on different Python packages, each of

them including a different tool of the forge itself. When we started contributing

to the project, the forge was composed of 14 main packages, including more

than 5,000 files and almost 80,000 lines of code within more than 800 classes.

The project is developed by a community including about 15 programmers

which contributed by providing code within the last six months, either as

committers or as external developers.

In particular, the packages of Allura include:

• The package Allura includes the core functionalities of the forge;

• ForgeBlog includes the code of a tool allowing to setup a blog within a

project. Each blog post also has a related discussion, in which each user

is allowed to add any comment or discuss the content of the post itself.

• ForgeChat is a package implementing an Internet Relay Chat, allowing

real-time communication within members of the community.

• The package ForgeDiscussion implements the tool allowing to add a dis-

cussion related to another artifact or to a project. Each discussion is

structured as a simple sequence of posts, which can be created and later

modified by its author.

• ForgeGit is a set of modules implementing the tool which is needed to

include a Git repository within a project.

• ForgeSVN is a package which allows to create a SVN repository within

a project.

• ForgeHg provides support to create a Mercurial repository including the

code of a project. The code was recently moved to an external repository

and included as an external dependency of the forge.

• ForgeLink is a tool to add an external link to a Web-page related to a

certain project.

49

Allura Apache Podling

• ForgeTracker implements all the functionalities of a traditional tracking

system, allowing users to raise new issues to signal a discovered bug or

to request a new feature. The tool also allows to discuss about the issue,

assigning it to a certain user, and to change its status, in order to check

the solving process. Moreover, each ticket can be assigned to a specific

milestone and tagged with one or more labels.

• ForgeShortUrl is an additional tool which, if installed within a project,

allows to shorten the URL of the project itself.

• The package ForgeWiki contains the code implementing a tool to be

installed within a project to create a wiki, which can be used, for example,

to include a description of the project, to describe its architecture or to

provide a guide to its users.

• ForgeActivity implements the functionalities needed to allow each user

to check the feeds of the activities conducted by watched people or within

followed projects. It also allows to check a list of the activities related

to a single project.

• The package AlluraTesting includes a set of classes and functions sup-

porting the definition of tests within Allura. In particular, it defines the

class TestController, which can be extended to define new tests for Al-

lura, some functions to setup functional and unit tests, as well as some

additional classes which can be extended to create tests for additional

tools, also providing methods to check their installation.

• NoWarnings is a package which includes a nose plug-in to suppress warn-

ings during tests, with the purpose to reduce noise. Nose is an extension

to the Python library Unittest, which allows to simplify the creation and

the execution of unit tests.5

5https://nose.readthedocs.org/en/latest/

50

4.2 Contribution Policies

Each package is further composed of different sub-packages. In particular,

each of them includes:

• An extension to the model, including the set of classes representing the

additional entities to be managed by the tool itself. This package is

simply omitted in those tools which don’t need to extend the model

representing data within the forge;

• The set of templates representing the view component;

• The controllers to implement the business logic;

• A set of tests to verify the code functionalities.

4.2 Contribution Policies

The community developing Allura includes a set of contributors working full-

time on the forge, which are professionally involved in the Website Source-

Forge.net or its owning company, GeekNet Media, owned by Dice Holdings

Inc. However, the community is also open to other contributions. These

consist of both committers and other volunteers.

A volunteer occasionally contributes as an external developer, by providing

patches, taking part to discussions, discovering bugs or proposing new features.

These contributors are also allowed to submit relevant portions of code by

creating a forked version of the main repository and later asking to merge it

with the original one.

According to the Apache policies, when the developer’s involvement within

the project becomes significant, and the submitted code is considered a qual-

itatively and quantitatively significant contribution, he or she can become a

committer of the project. Being a committer of the project literally means be-

ing granted commit access on its code repository. Therefore, a committer is a

developer who is allowed to directly write on the repository, making changes to

it without the need of someone else’s intervention. A committer is also granted

several other rights and responsibilities. In particular, committers can vote for

new releases of the software, and they can review and apply patches submitted

by external volunteers. Moreover, they are required to contribute supporting

51

Allura Apache Podling

users by answering their questions, to monitor messages about commits, to

check bug reports, and to contribute updating the project’s website.

The process adopted by the community to elect new commtters is based on

proposals made by other committers. In Allura, this process is faster than in

other projects, since the community is still young and includes a small number

of developers. At the moment, less than ten committers work on the forge,

and four addittional developers are also mentors during the Apache Incubation

process. Mentors are members of the Incubator Project Management Commit-

tee (IPMC) with responsibilities toward both the community and the IPMC

itself.

In particular, each proposed committer is voted by the Podling Project

Management Committee (PPMC). The PPMC is a set of people, acting on

behalf of the Apache Software Foundation, supervising the whole project. In

order to be successful, the vote, which takes place through the PPMC members

private mailing list, requires that at least three PPMC members, including a

podling mentor, vote with a “+1”, and that nobody votes with a “-1”.

After being voted as a committer, the developer is asked to sign an Individ-

ual Contributor License Agreement (ICLA), in which the contributor accepts

the terms concerning intellectual property of following submissions. In case the

contributor is working on the project as an employee of an external company or

organization, the company is also asked to fill a Corporate Contributor License

Agreement (CCLA).

After receiving the needed documents, the ASF Secretary records it, and

the developer’s account is created, therefore allowing him or her to contribute

as a committer.

4.3 The Development Process

The process adopted by the community to develop the project Allura, as well as

that of most other open source projects, is open to contributions from everyone

and is mainly based on discussion.

The core contributors are granted write permission on the repository host-

ing the code of the forge. Other users are allowed to access it in read-only

mode. These users can indirectly contribute to the forge, by reporting bugs or

by suggesting new features through the tracking system related to the project

52

4.3 The Development Process

Figure 4.3: The development process adopted by the Allura community to
implement new features.

itself, or they can directly contribute to the code. To do so, they can submit

patches including their contribution. Alternatively, they can create a new fork

of the main project and work on it, developing new features or improving the

existing ones.

In order to include on the main repository the changes applied to its forked

version, the developers working on it are asked to submit a merge request

including a description of their changes. A discussion also involving the core

developers is later used to suggest further improvements, if needed, or to better

understand the goals of the proposed changes. If the result of the discussion is

to include the proposed code, the commits applied to the forked repository are

merged with the original repository, and the developed code will be available

to everyone downloading the main version of Allura.

It is suggested that all major changes are discussed prior to be developed

and proposed to the community. This step is not defined in a formal way,

but a consensus-based mechanism is generally applyed. For that purpose, the

community uses a mailing list entirely dedicated to the development of the

53

Allura Apache Podling

forge.

Major changes can also be proposed by core members of the Allura project.

To do so, they don’t need to create a forked version of the repository, but they

can simply create a new branch on the main one. Each branch is supposed to

be preceded by an issue on the tracking system related to Allura, explaining

the purpose of the branch itself. The name of the branch is also required to be

consistent with a predefined pattern: it should begin with the initials of the

contributor who is creating the branch, followed by the number of the issue

describing the branch itself. As for changes made by external contributors, the

features developed in a branch of the repository need to include appropriate

tests and to be revised by fellow committers prior to be included in the main

release of the forge. During the revision, changes are discussed on the mailing

list or on the discussion related to the issue which introduced the proposed

features.

In particular, the review of changes developed by committers or by external

users is conducted by a single member of the community, but any other contrib-

utor is allowed to contribute to the discussion. The reviewer is the developer

who is in charge of checking the quality of the code, suggesting improvements

and deciding whether to accept the proposed code or not.

The previously described process is also summarized through the flow chart

represented in Figure 4.3.

54

Chapter 5

Our Extension: Allura TITANS

The work presented in this thesis led to the development of a set of tools

aimed at including the previously exposed features within the forge Allura.

In particular, these tools will be referred to as Allura TITANS, Tools for

Increasing Trust and AwareNesS.

Some of the developed tools have been directly included in the core mod-

ules of the forge, while others have been developed as additional and optional

packages, which can be freely included or removed from a local installation of

Allura. Details about each tool architecture and functionalities are provided

in the remainder of this chapter. In particular, Section 5.1 describes the tool

allowing to add personal details, skills and availability timeslots to a user

profile. Section 5.2 explains the architecture and implementation of the tool

which allows to include the concept of organizations within the forge.

Section 5.3 focuses on the additional module which is responsible for collect-

ing and retrieving metrics concerning the previous activity of a user. Similary,

Section 5.4 describes the module which collects metrics and statistics about

the overall contributions provided by an organization to the projects hosted

on the forge.

Finally, Section 5.5 describes the development process, explaining the in-

teractions with the community working on Allura and the tools adopted to

discuss the described contributions and their inclusion on the forge.

Our Extension: Allura TITANS

5.1 User profiles

The first part of the work exposed in this thesis consisted in expanding the set

of data included in user profiles within the forge. Before this extension was

included, Allura provided developers with basic user profiles, allowing to show

only a username and a display name, usually intended as the user’s complete

real name.

As a result of the problem analysis exposed in Chapter 3, user profiles

were expanded, in order to allow each user to optionally include details about

themselves. The expanded set of personal data is publicly shown on the user’s

Web page. These details include information concerning the user’s localization,

time zone, usual working timeslots, personal contacts and skills. In particular,

the data a user can include on his or her profile now include:

• User’s gender. By default, this field is set to the value ’Unknown’, but

each user can freely set it to ’Male’, ’Female’ or ’Other’.

• Date of birth, including day, month and year in which the user was born.

• Country of residence. This data is mainly useful to help understanding

the cultural environment in which the user is currently living.

• City of residence. This allows to identify the user’s cultural environment

with a finer granularity than the country of residence.

• User’s time zone, specified according to the IANA Timezone Database.1

Knowing a user’s time zone allows to understand whether a user is in his

or her working time or not in a certain moment.

• Weekly availability timeslots. This data consist in weekly time intervals

during which a user is usually working on the projects hosted on the

forge. Together with the user’s time zone, it allows to easily assess when

a user is expected to be available for working on a project. This could

be useful, for example, when another user is waiting for an answer to a

certain message or needs the user to start working on a reported issue. In

order to overcome time zone differences, when a developer wants to know

someone else’s availability timeslots, these data can be shown converted

1http://www.iana.org/time-zones

56

5.1 User profiles

in the local time of both the involved users, as well as converted according

to the UTC standard.

• Inactive periods. By specifying an interval of dates, each user can notice

his or her collaborators that, despite usually being available at certain

timeslots, he or she will not contribute to the projects hosted on the

forge for a certain period, because of a vacation or because of other

commitments.

• A list of personal accounts on social networks like Twitter, Facebook,

Google+ or Linkedin, thus allowing to release additional personal infor-

mation about the user’s interests and fostering an informal communica-

tion among the developers contributing on the forge.

• The user telephone number, or a list of phone numbers, to provide users

with a way of personally contact someone else on the forge.

• The user’s Skype account, giving a further opportunity to directly con-

tact a user.

• A list of personal Web-sites, considered relevant by the user to provide

other developers on the forge with details about himself or herself, or

about his or her activity.

• A set of technical skills, allowing each user to self-assess himself or her-

self. For each skill, the user is also required to specify his or her level

in the selected field, by choosing between the values ’Low’, ’Medium’ or

’Advanced’. Finally, the user is allowed to enter an optional free com-

ment, mainly useful to describe how the skill was developed or enforced.

The categorization of skills is based on the Trove system. This system,

which was introduced in Section 4.1, also includes categories based on

dimensions which are not relevant for user skills. Therefore, these cate-

gories were removed from the set of options which users are allowed to

select as their skills. An editing functionality has also been introduced,

allowing users to edit the set of available skills to reflect the introduction

or evolution of new technologies. This functionality can also be disabled

by setting a parameter in the Allura configuration file.

57

Our Extension: Allura TITANS

The relevance of some of the above listed details varies according to the scope

in which the forge is intended to be used. This consideration, together with

obvious privacy-related issues, led us to implement all these details as optional

fields. Therefore, developers are allowed to choose what kind of details they

want to provide to remaining members of the forge.

Nonetheless, providing users with the opportunity to include such details

has the goal to increase the awareness of someone else’s background, avail-

ability and potential interests or contributions. As discussed in Section 3.1,

informal communication among developers is a key element, and the extended

user profile includes data allowing to foster communication through external

tools like social networks. Moreover, the introduction of skills evaluation could

be very useful to improve task assignments within a project, as well as to im-

plement a matching system between project needs and users who would like

to start contributing to a new project.

Figure 5.1: UML class diagram representing the additional personal details of
a user.

58

5.1 User profiles

Figure 5.2: UML class diagram representing the controllers to manage personal
details of a user.

From an architectural point of view, this extension did not require the

introduction of new packages and was mostly implemented by modifying the

existing classes. The model component of Allura was modified by including

additional attributes and methods in the class representing a single user of

the forge. This class, simply named User, is directly mapped to the Mongo

collection with the same name, which persistently stores data about users of the

forge. The most relevant changes are represented by the UML class diagram in

Figure 5.1. As shown by the diagram, a link with the concept TroveCategory,

which was already defined within the forge, was also introduced. In order to

reduce the complexity of the diagram, only attributes, methods and relations

relevant with the purpose to describe user profiles are included.

The class PreferencesController, which implements the logic allowing

to set users’ preferences, was also modified as shown in Figure 5.2, by in-

troducing the methods to update the previously listed details. A controller

implementing the logic to add or remove a skill from a user profile was also in-

troduced. This controller is represented by the class UserSkillsController.

Finally, the logic to manage the Trove categories collection was included in the

class TroveCategoryController. These changes are represented in Figure 5.2,

which also includes links with the already existing classes RootController,

representing the main controller of the whole forge, and AuthController,

which manages actions related to user management within the forge. Methods

of already existing classes are omitted to reduce the complexity of the diagram.

59

Our Extension: Allura TITANS

Figure 5.3: Screenshot representing a personal profile including the newly
introduces personal details

The Web-page including a user’s personal profile was updated to include

the newly created fields, as shown in Figure 5.3.

Finally, additional Web-pages were introduced, including the forms to add,

remove or modify the additional data. In particular, the screenshot in Figure

5.4 represents the form displayed when a user wants to update his or her set

of skills. The page includes buttons to remove already existing skills, as well

as a form allowing a user to insert details about a skill to be added on his or

her profile.

60

5.2 Organizations

Figure 5.4: Screenshot representing the form to update a user’s set of skills

5.2 Organizations

As discussed in Section 3.1, the inclusion of an explicit concept representing

real-life organizations contributing to the forge was considered a relevant ele-

ment in increasing awareness and fostering trust in the open source products

developed by means of the forge itself.

The concept of organization includes three different kinds of entities:

• Software firms developing or contributing to develop open source prod-

ucts;

• Foundations supporting open source projects, such as the Apache Soft-

ware Foundation;

• Education and research institutions such as universities, which could

contribute to open source projects, for example, as part of their research

activities.

In order to include this concept within the forge, we developed a separate

package. The newly created package provides users with functionalities to

61

Our Extension: Allura TITANS

create or update the profile of an organization, to explicitely link a project

to the organizations contributing to its development, and to connect each

organization to the profiles of its members registered on the forge.

Since the forge could be installed within different scopes, the rest of the

code is independent from the package. Therefore, users such as those who

intend to use the forge within a single organization are allowed to omit the

installation of the new package, so that they can continue to use the forge

without dealing with a concept they don’t need.

The package includes three separate components:

• The first one is a set of modules representing the concept of organiza-

tion. This component also implements the functionalities to create an

organization profile, and it provides users with functionalities to moni-

tor the list of their organizations and to change details related to their

memberships.

• Similarly to users, each organization is represented by a particular

project, an organization project, which is automatically created when

a user registers a new organization, and which includes tools to manage

and to present all the details related to the organization itself.The second

package is a tool which represents an organization’s public profile. The

tool includes functionalities to represent the profile of the organization,

but it also provides the administrators of the organization with a set of

functionalities to update the profile of the organization itself.

• The last component included in the package is an additional tool that is

automatically installed within a project to include the list of organiza-

tions directly contributing to the project itself. The tool also allows to

specify a different level of participation for each organization.

Since all the functionalities related to a single organization are included within

a project, the default mechanism allowing to manage groups of roles within a

project is used. This mechanism allows to create different groups with different

permission levels. Administrators are the only users with the power to edit

the profile of the organization and perform other actions, including sending

requests to collaborate to a project or to include a user within the list of

members of the organization itself.

62

5.2 Organizations

As for the rest of the software, each package’s architecture is based on

the Model-View-Controller pattern. The model of the organization’s concept

includes all the classes directly mapped to the database of the forge. As shown

in Figure 5.5, the most important class which was provided within this tool is

named Organization, and includes the attributes and methods representing

the most relevant details of each company, foundation or education institution.

In particular, for each organization, the following data is provided:

• The type of the organization, chosen among three predefined values: For-

profit business, Foundation or other non-profit organization and Research

and/or education institution.

• The dimension of the organization. By default, this value is set to Un-

known, but it can be changed to one of three predefined values: Big

organization, including more than 250 members, Medium organization,

including from 51 to 250 members, and Small organization, including at

most 50 members.

• A brief description of the organization, provided as free text.

• The link to the organization’s official website.

• A list of work-fields. This concept is represented by means of a relation-

ship with a class WorkFields, which includes a set of predefined working

areas. For each working area, a name is provided, together with a brief

description explaining its meaning.

• The localization of the organization’s headquarters.

All these details, except the organization type, are completely optional, so that

each organization can freely choose which data to include on its profile.

Figure 5.5 also shows existing relationships with users and projects within

the forge. For each class, the attributes and methods which don’t deal with

organizations are omitted, in order to focus on provided features only.

63

Our Extension: Allura TITANS

Figure 5.5: UML class diagram representing the introduced concept of orga-
nization.

Each organization is linked to one or more users by means of the class

Membership. Details provided by the Membership class include:

• A free description of the user’s role. For example, typical roles within

a corporation are developer, software engineer or CEO, while some of

the most common roles within an education institution include student,

teacher and assistant.

• The status of the membership, which is used, for example, to specify

that the user is no longer active within the organization.

• The date in which the user was recognized as a member of the organiza-

tion.

• The date in which the user left the organization, if applicable.

Similarly, the relationship between an organization and its projects is imple-

mented through a class ProjectInvolvement, which is directly mapped on a

collection of the underlying database and which provides data such as:

• The organization’s involvement type. In particular, two values are al-

lowed: cooperation, meaning the organization plays a key role in the

64

5.2 Organizations

project development, or participation, in case the organization only pro-

vides some support, for example developing some portions of code, while

core decisions are taken by the remaining involved actors. This allows to

understand whether an organization has a primary or secondary role in

the development of a project hosted on the forge.

• The status of the organization’s involvement.

• The date in which the organization started to work on the project.

• The date in which the organization stopped to collaborate to the project,

if applicable.

Figure 5.6: Screenshot showing the public profile of an organization on the
forge.

65

Our Extension: Allura TITANS

Figure 5.6 shows the public profile of an organization. The first section of

the profile includes all the previously listed general details of an organization.

The section titled Members includes a list of users of the forge directly involved

in the organization, while the last section includes all the projects to which

the organization participates. Past memberships and closed participations to

projects are also listed, specifying the dates in which each relationship started

and ended.

When creating a project, if organizations are enabled in the forge, the tool

supporting relationships between projects and organizations is automatically

installed within the new project. Through the tool, the administrator of the

project is allowed to invite an organization to join it. In order to find the

needed organization, a name-based search mechanism is implemented, allowing

to enter a part of the organization’s name and to check the list of organizations

matching the specified query.

Figure 5.7: Screenshot representing the tool to manage organization’s involve-
ment within a project hosted on the forge.

66

5.2 Organizations

As show in Figure 5.7, the tool lists the organizations involved or previ-

ously involved in the project. The status and the type of the organization’s

involvement can be updated through this Web-page.

In order to manage his or her involvement within organizations operating

on the forge, each logged user is allowed to access a Web-page listing active

memberships. This page, represented in Figure 5.8, allows to change the user’s

role within the organization, and to change the status of the user’s member-

ships. If the user is an administrator of the organization, a link to the page to

update the organization’s profile is also included.

Figure 5.8: Screenshot representing the Web page allowing to edit a logged
user’s enrollments.

In order to ensure reliability of the declared relationships, the membership

of a user within an organization needs to be confirmed according to a two-ways

mechanism. According to this mechanism, an organization is allowed to invite

a user to formally state his or her membership within the organization itself,

but the interested user has to confirm the stated involvement. Similarly, a user

can send a request of being listed among the members of an organization, but

67

Our Extension: Allura TITANS

Figure 5.9: State diagram outlining the state transitions related to a user’s
membership in an organization.

before appearing in the public profile, the organization needs to confirm this

relationship.

The state diagram represented in Figure 5.9 summarizes how a user’s in-

volvement within an organization can evolve over time, highlighting the events

responsible for each transition between one state and another one. After the

membership has been closed, it is not possible to directly open it again: to

do so, it is necessary to open a new relationship, following the same steps

previously described.

The mechanism adopted to specify an organization’s involvement with a

project is based on a similar approach, as represented in the diagram in Figure

5.10. In this case, the request can either be sent by the organization adminis-

trator, on behalf of the organization itself, or by the project administrator.

These mechanisms are intended at preserving trust in the users and orga-

nizations working on the forge, avoiding the possibility for them to pretend of

being involved in someone else’s organizations or projects.

68

5.3 User statistics

Figure 5.10: State diagram outlining the state transitions related to an orga-
nization’s involvement in a project.

5.3 User statistics

In order to allow users to have a deeper awareness of the past contributions

and experience of their fellow developers, an additional tool was introduced.

The aim of this tool is to gather statistics from activities performed by users

of the forge. This data is used to compute a set of metrics, made available to

developers through the forge itself.

These features of the forge were implemented in a separate package, which

represents a tool automatically installed within a project representing a user

of the forge. The package includes different components:

• The model representing all the relevant statistics;

• The controller component, implementing the logic to update and retrieve

a developer’s statistics;

• The set of classes to produce the Web-based interface providing com-

puted data;

• A package including some unit tests and some functional tests.

69

Our Extension: Allura TITANS

The architecture adopted to implement this tool was designed with the goal to

easily allow to plug additional tools collecting and showing statistics related

to different entities, such as projects or organizations. For example, the tool

introducing statistics related to a single organization was later designed and

implemented within the forge itself, as explained in Section 5.4.

The designed solution consists of an event-based mechanism. Events are

automatically generated each time a user performs an action which is consid-

ered to be relevant with the purpose of updating statistics. Generated events

are notified to registered listeners, which are responsible for updating statistics

related to controlled entities, according to their own logic and purposes. This

design solution allows to incrementally compute real-time statistics.

In order to register a new listener, it is necessary to develop and install a

new package. The package should introduce two new entry points:

• The first one, defined within the predefined group allura, should link to

a Python class representing the tool which provides the logic to present

statistics related to the considered entity;

• The second entry point should be defined within the group

allura.stats, and it should link to the listener class. The listener

should be defined as a child of the abstract class EventsListener,

and it should implement the logic adopted to update statistics as a

consequence of an event performed within the forge

Figure 5.11: Class diagram representing the abstract class EventsListener.

The class EventsListener was specifically defined for this purpose. As

represented by the UML class diagram in Figure 5.11, this class provides an

abstract method for each event. In particular, some of the considered events

are the registration of a new user and the login of a user. Other events are

generated when a user submits a new artifact or modifies an existing one, such

70

5.3 User statistics

as a discussion post or a wiki page, or when he or she commits some new code

to a repository hosted on the forge. The forge also considers all the events

related to ticket management, like the creation of a new ticket or its status

changes. Additional events are defined, but they are not relevant in order

to update the statistics profile for a single user and they will be discussed in

Section 5.4.

The tool implementing statistics related to users, as well as any other pack-

age implemented according to the same mechanism, can be omitted from the

installation of the forge. That way, users are allowed to have a local installation

of the forge which doesn’t provide any of the functionalities listed in this sec-

tion. This decision was taken with the purpose to better suit the requirements

of different scopes within which the forge can be installed.

Furthermore, each single user can freely decide whether to make his or

her personal statistics public or not. As discussed in Section 3.2, most of

the respondents of the survey declared that they would make their personal

statistics visible to any other users. Nonetheless, we decided to preserve the

right of the remaining users to avoid anyone else to read detailed data about

their past contributions.

The set of metrics included in a user’s statistics profile is as follows:

• Number of logins;

• Date and time of the last login, to establish whether the user is still

active on the forge;

• Number of commits performed by the user;

• Number of new or modified lines committed by the user;

• Number of new artifacts created by the user;

• Number of changes to existing artifacts performed by the user;

• Number of tickets assigned to the user;

• Number of tickets solved by the user;

• Average time spent by the user to solve a ticket;

71

Our Extension: Allura TITANS

Figure 5.12: Screenshot representing the tables summarizing user statistics
about registration and contributions.

• Number of tickets revoked to the user, namely tickets that were assigned

to the user and were later assigned to someone else.

For each metric, data is computed as a total value since the user’s registration,

as well as a partial value, based on a sliding window which includes the last 30

days only. Average per-month values are also computed. Per-month metrics

allow users to easily understand the usual frequency of contribution of other

developers.

In order to establish whether a user’s commitment in the forge is increasing

or decreasing, additional indicators are included in a user’s statistics profile.

72

5.3 User statistics

Figure 5.13: Screenshot representing the Web page listing the topics of the
projects to which a user participates.

These indicators are shown as up or down arrows, representing that recent

contribution is higher or lower than its average per-month value, respectively,

or as an equal symbol, to represent a constant effort. The resulting Web-page

is represented in Figure 5.12.

The Web interface also includes a histogram which highlights the user’s

involvement in different topics. In particular, the histogram represents the

number of projects to which a user participates for each category or topic, as

shown in Figure 5.13.

With the same purpose, per-category statistics are also collected. The data

for each single category is obtained by considering all the user’s contributions

to projects which have been tagged as belonging to that category. This is

mainly useful to understand whether a user is strongly experienced within

certain kinds of software applications or not. By clicking on the name of each

category in the table listed in Figure 5.13, statistics filtered by category are

shown in a new Web-page, similar to the one represented in Figure 5.14.

73

Our Extension: Allura TITANS

Figure 5.14: Screenshot representing the Web page listing statistics about the
contributions submitted by a user in a single category of projects.

Finally, by clicking on the links included within the tables shown in Figure

5.12 and in Figure 5.14, users receive additional details about each single met-

ric. In particular, instead of presenting data for a single category, the resulting

Web-pages compare contributions in each different category, for a single area

only. Three different areas or sections are considered: the table in Figure 5.15

refers to code commits, the table in Figure 5.16 lists the number of artifacts

created and edited for each category, and the table in Figure 5.17 is related to

ticket management.

74

5.3 User statistics

Figure 5.15: Screenshot representing the table which includes data about a
user’s commits for each category of projects.

Figure 5.16: Screenshot representing the table which includes data about a
user’s artifacts for each category of projects.

Figure 5.17: Screenshot representing the table which includes data about a
user’s tickets for each category of projects.

75

Our Extension: Allura TITANS

These screenshots also make it clear that, since each project can be related

to more than a single topic, a single action performed by a user can result in

increased values for indicators related to two or more categories. For example,

it is possible that the sum of the number of commits performed by a user for

each single category is higher than the total number of commits performed by

the same developer.

The last feature of the tool allows to compare contributions of a single user

with contributions submitted by remaining users of the forge. An indicator

representing the average per-month contributions of each user is compared

with the same data computed for all the other users of the forge. More in

details, three different indicators are considered:

1. An indicator representing code contribution, based on the number of

committed lines;

2. An indicator representing discussion contribution, based on the number

of created or edited artifacts;

3. An indicator representing issues solved by the developer, based on the

ratio between the number of issues solved by the user and the number

of assigned issues.

Figure 5.18: Screenshot representing the rankings of a user’s contribution
within the forge.

As shown in Figure 5.18, the resulting values, expressed by percentages,

are included in the statistics profile of each user. A value of 100% for the

commit indicator means that the developer is the user who submitted the most

average per-month lines of code; a value of 100% for the artifacts indicator is

associated to the user who has the highest participation to discussions on the

76

5.3 User statistics

forge, computed as the number of created or edited artifacts. Finally, a value

of 100% for the issues indicator is assigned to the user with the highest issues

solving ratio.

As previously discussed, statistics are based on an incremental mechanism,

therefore their internal representation consists of counters which are incre-

mented every time a relevant action is performed. This decision is related to

performance issues: the number of users of a forge could be very high, and the

number of existing artifacts, tickets and commits is even higher. Therefore,

it would be impossible to compute statistics on-the-fly, through queries to be

performed on the database, especially if statistics include the number of added

lines of code, which is computed by comparing two different versions of the

repository.

Moreover, separate counters for each category are stored within the

database, allowing to split statistics with respect to the topic of projects.

In particular, these counters are stored within a list, named general, which

stores metrics for each category. Overall statistics are represented by an ele-

ment related to the None category.

Figure 5.19: Class diagram representing the model adopted to store user statis-
tics.

77

Our Extension: Allura TITANS

However, simple counters would not allow to implement statistics based

on a sliding window which includes the last 30 days only. As a consequence,

the list of events registered during the last 30 days is also stored, under the

name lastmonth. Every time this list is updated or retrieved, those events

which were registered more than 30 days ago are removed from the list itself,

ensuring correctness and avoiding the list to include too many events, since

this would once again worsen performances.

Figure 5.19 represents the structure of the model including gathered statis-

tics for a user of the forge.

More in details, the attribute general contains a list of dictionaries, each

of which represents data for a single category, represented through:

• A reference to the category to which data refers, set to None in case data

refers to general contributions of the user;

• An element messages, which is a list of dictionaries, each of which refers

to a particular type of artifacts. In particular, each dictionary includes:

– A string representing the type of artifacts to which data refers, such

as wiki pages, blog posts, discussion posts, and so on;

– A counter of created artifacts of the selected type;

– A counter of modified artifacts of the selected type;

• An element tickets, which is a dictionary, including:

– A counter of assigned tickets;

– A counter of revoked tickets;

– A counter of solved tickets;

– The total solving time, namely the sum of the amount of seconds

needed to close a ticket, obtained by considering all those tickets

which were assigned to the selected user.

• An element commits, which is a list of dictionaries, each of which repre-

sents data for a single programming language, represented through:

– A reference to the selected programming language, set to None in

case the dictionary refers to general statistics;

78

5.3 User statistics

– A counter of the number of commits;

– A counter of the number of committed lines, namely lines which

were created or modified by the user.

Finally, the attribute lastmonth consists of a dictionary which includes:

• An element messages, namely a list of events related to artifacts created

or modified during the last 30 days. Each artifact is represented by a

dictionary which includes:

– The date and time in which the event was registered;

– A boolean value specifying whether the event represents the creation

of a new artifact or was generated after an existing artifact was

modified;

– A string representing the type of the artifact;

– A list of the categories belonging to the project in which the artifact

was posted.

• An element assignedtickets and an element revokedtickets, namely

a list of events registered during the last 30 days and related to assigned

and revoked tickets, respectively. In both cases, each event is represented

by a dictionary which includes:

– The date and time in which the event was registered;

– A list of the categories belonging to the project in which the ticket

was posted.

• An element solvedtickets, which is the list of events registered during

the last 30 days notifying that a ticket was solved by the user to which

statistics refer. Each event is represented by a dictionary. Similarly

to dictionaries representing assigned and revoked tickets, it includes the

date and time of the event and the list of linked categories. However,

solved tickets also include an additional element, which represents the

solving time stored as the number of seconds between the creation of the

ticket and the moment in which the ticket itself was closed.

79

Our Extension: Allura TITANS

• An element commits, consisting of a list of dictionaries representing com-

mit events registered during the last 30 days and performed by the user

to which statistics refer. Each event is represented through:

– The date and time in which the commit was performed;

– A list of the categories belonging to the project in which the code

was committed.

– The number of committed lines;

– The list of involved programming languages.

Despite considering different programming languages while designing the

model to store statistics, at the moment, the number of commits and the

number of lines of code is not computed on a per-language basis. In fact,

many projects are tagged with two or more programming languages, and it is

impossible to automatically establish, for each single line of code, the program-

ming language in which it was written. Splitting statistics by programming

language could be easily implemented as an additional feature simply by pro-

viding a way to tag each single line of code with its programming language,

since the model already provides support for it.

5.4 Organization statistics

The last tool which was designed and developed to increase awareness and trust

within the forge, named ForgeOrganizationStats, has the goal to collect and

display statistics about contributions submitted by an organization to projects

hosted on the forge. This tool is therefore very similar to the one which gathers

statistics about contributions of single users, ForgeUserStats. In particular, the

ForgeOrganizationStats tool is based on the mechanism described in Section

5.3 to implement new statistics-related features. In this case, the created tool

is automatically installed within the project of a single organization.

Collected statistics for organizations are very similar to per-user statistics.

Data collected for each organization include:

• The date in which the organization was registered on the forge;

• The total number of committed lines of code;

80

5.4 Organization statistics

• The total number of code commits;

• The total number of created artifacts, including the number of artifacts

for each existing type, such as wiki pages, discussion posts, tickets and

blog posts;

• The total number of modified artifacts. As for created artifacts, this

data is also computed for each single existing type of artifacts;

• The total number of assigned tickets;

• The total number of revoked tickets;

• The total number of solved tickets;

• The average time needed to solve a ticket.

As explained in Section 5.3, all these metrics were also calculated on a per-user

basis. However, values for organizations are not simply computed as the sum

of the contributions of all the members of the organization itself. Since users

of the forge can be members of more than a single organization, and they are

also allowed to contribute to projects as single individuals in their spare time,

each action performed by a user is considered to be performed as a member

of the organization only in case the organization is explicitly involved in the

project in which the event was registered.

As for users contributions, all these metrics are not only computed as a total

value since the day in which the organization joined the forge, but also as a

per-month value, and as the value obtained by considering actions performed

during the last 30 days only. An example of the table including this data is

represented in Figure 5.20.

Moreover, organization statistics include data about per-member contribu-

tions during the last 30 days. In particular, as shown in Figure 5.21, some of

the previously listed values, obtained by considering the last 30 days only, are

computed as the average number of contributions submitted by each member

of the organization. This allows to establish individual effort, regardless of the

number of members working for the considered organization. Values are not

computed by considering contributions too far in time, since they could be

unreliable as a consequence of relevant variations in the number of employees.

81

Our Extension: Allura TITANS

Figure 5.20: Screenshot representing the tables summarizing organization
statistics about registration and contributions.

Additional metrics for organizations are computed, allowing to collect more

details about their members. As shown in Figure 5.21, these include:

• The total number of members within the organization;

• The number of members which joined the organization during the last

30 days;

• The number of members which left the organization during the last 30

days;

82

5.4 Organization statistics

Figure 5.21: Screenshot representing the tables summarizing membership data
and per-member contributions within an organization.

Similarly to profiles including statistics about single users, categories are

also considered. As shown in Figure 5.22, the number of projects for each

category is presented both within a table and as a histogram, allowing to un-

derstand at first sight which topics the organization is focused on. By clicking

on the name of a category, the Web-page including contributions submitted

by the organization in that category is presented. Since organizations can

contribute to a project both as cooperators and as supporting participants,

the number of projects is also split according to the type of involvement. This

data is included within a table, also showing the number of projects joined or

left during the last 30 days.

Metrics are also computed by considering a single topic to which the organi-

zation contributes on the forge. By clicking on the links included in the table

represented in Figure 5.20, Web-pages listing contributions in a single area

are shown, splitting data for each individual category. The considered areas

are code commits, issues solving and discussions participation. This allows to

compare the organization’s efforts in each single topic. Moreover, by clicking

on the links in Figure 5.22, a Web-page listing all statistics collected in a single

category is presented to the final user.

83

Our Extension: Allura TITANS

Figure 5.22: Screenshot representing data about projects involvement for a
single organization, as well as the organization’s topics of interest.

Figure 5.23: Screenshot representing indicators comparing the contributions
of an organization with contributions of the other ones registered on the forge.

84

5.5 Development and Discussion Process in the Allura community

Finally, a comparison between per-month contributions of each single or-

ganization is included. The adopted logic is the same described in Section 5.3

for users, and the presented output is shown in Figure 5.23.

The package ForgeOrganizationStats includes:

• The model storing per-organization statistics;

• The listener which updates data when relevant events are notified to it;

• The controller implementing the logic to present statistics to users;

• The templates representing the Web-based interface allowing users to

navigate through the statistics of organizations registered within the

forge;

• A set of unit tests and functional tests.

The structure of the model is very similar to the structure of the model adopted

to store statistics for a single user. In particular, the UML class diagram is

presented in Figure 5.24. The diagram does not include details about the class

Stats, which was discussed in Section 5.3.

Figure 5.24: UML class diagram representing the class adopted to store statis-
tics about a single organization.

Finally, the tool allows to the administrators of the project representing

an organization to change the visibility of statistics related to the organization

itself. Therefore, as discussed for single users, each organization can decide to

hide its own statistics so that they are available to the organization’s admin-

istrators only.

5.5 Development and Discussion Process in

the Allura community

All the previously listed extensions have been implemented and discussed ac-

cordingly to the Allura community development process. First of all, we pro-

85

Our Extension: Allura TITANS

posed some members of GeekNet, the company owning SourceForge, to collab-

orate with the community to implement tools related to awareness. Given the

interest of these members, we subscribed to the development mailing list of

Allura and we registered to SourceForge.net, which currently hosts the project.

In our first message on the mailing list, we introduced ourselves to the com-

munity developing Allura and we briefly described our goals and our intended

contributions to the project. The community shown interest in our proposals

and proposed some changes to our requirements. The most relevant change in

the proposed features consisted of leaving out of scope the introduction of met-

rics and indicators related to a single project, already under development by a

different group of developers, which is following a slightly different approach.

We subsequently organized our work splitting it into four different parts, as

described in the Section 5.1, in Section 5.2, in Section 5.3 and in Section 5.4.

Starting from the extension related to personal profiles, we proposed our tools

one by one to the community. Each component, before being uploaded to be

evaluated by the community, was introduced by a more detailed description

provided through a discussion on the mailing list.

The first part of our work was submitted by creating a new fork of the main

repository, and working on it. A discussion with the community followed, and

the code was significantly modified in order to comply with the standards

adopted within Allura. After being reviewed, the code was accepted, and it

became available in the main repository of the forge.

Following the positive evaluation of our code, one of us was granted commit

access to the Allura repository, allowing us to directly work on a branch created

on the repository itself.

Starting from the second component of the project, which included statis-

tics about users, we submitted our contributions to the newly created branches.

Discussions with the community continued to take place on the mailing list as

well as on the discussions threads related to the issues which were raised to

propose the introduction of our tools.

During the development of the described tools, we were also allowed to

experience with the policies adopted to manage contributions and to provide

support to new contributors. Despite some barriers encountered during the

first steps of our contributions, such as the poor documentation related to the

code and the lack of initial knowledge of the adopted programming language,

86

5.5 Development and Discussion Process in the Allura community

Python, we were able to autonomously perform the analysis of the code, and we

later received a strong support from the community about how to contribute

to the software.

Encountered barriers could also be considered as a useful way to prevent

contributions by those users who don’t have the necessary skills and motiva-

tions to ensure a profitable collaboration.

The changes we proposed through the developers mailing list were also

received with attention from the community. Committers were ready to ex-

press their feedbacks about our proposals, recommending possible changes and

suggesting the adoption of already existing tools and architectural choices.

Moreover, the community provided effective support in helping us to under-

stand its policies and the coding conventions adopted to ensure readability and

consistency of the new code with the already existing one.

For each newly created set of features, provided code, as well as the tests

related to the code itself, was reviewed by a single committer, in order to

reduce individual effort. This activity consisted of some iterations, during

which the reviewer provided feedbacks about the code, and we were asked

to discuss about new proposals and to apply changes to our code. After a

change, the waiting time for new feedbacks usually consists of some days but,

due, to concurrent activities performed by community members, it can last

longer. Therefore, each one of our tools required approximately three months

to be accepted. The code-review activity proved to be very useful with the

purpose to detect possible issues not encountered by developers and to improve

provided functionalities, since it makes it possible to exchange ideas with expe-

rienced contributors. Architectural and implementative choices also received

attention and the community strove to suggest those solutions best fitting the

previously existing portions of code.

87

Chapter 6

Evaluation

This chapter includes an evaluation of the proposed tools, aimed at identifying

the results achieved through the discussed work. To evaluate the additional

features designed and implemented within Allura, two different approaches

have been adopted.

First of all, the software was evaluated by the Allura community, which

considered its potential impact on the forge and the quality of provided code.

This evaluation is presented in Section 6.1.

A further evaluation was obtained by considering the relevance of data

collected by the newly introduced tools with respect to a current study on

discovering latent social structures within organizations. This part of the eval-

uation process is presented in Section 6.2.

6.1 Evaluation by the community

The first evaluation of the developed work was conducted by the Allura com-

munity itself, which analyzed the proposals and inspected the submitted code,

evaluating its quality.

Therefore, by accepting the proposed code, the reviewers, on behalf of the

whole community, considered our contributions as good-quality pieces of code.

This also emerged during the discussion preceding the acceptance of the tools

themselves.

In particular, during the discussion following the development of the tool

extending user’s personal data, the reviewer initially praised the idea of the

tool, considering it as “very promising” and claiming to be “very pleasantly

Evaluation

surprised, actually, how far you’ve come without needing to ask for help or

pointers”, but also suggested improvements due to a lack of initial adherence

to some standards adopted by the community to develop the software. Most

notably, we were required to adopt EasyWidgets for HTML markup and in-

put validation, and to use JQuery instead of plain JavaScript. We were also

required to write additional tests for our software, and to improve the Python

syntax by removing some blank spaces preceding symbols like “:”, or by avoid-

ing to write the single-instruction body of conditional statements on the same

line of the condition itself

After committing the required fixes, subsequent work was considered “ex-

cellent” and “very nice” by the reviewer. These improvements required four

iterations, and the code was then merged into the main repository in early

December 2012.1 This also led the first of us to be granted committer rights

on the Allura repository.

Shortly after the acceptance of the first tool, on 12 December 2012, we

submitted the code related to statistics of single users. In particular, the code

was submitted within a branch of the original repository. The review process

started in late January 2013, but it was delayed due to concurrent reviews

involving the same developers. The process consisted of six iterations, during

which some improvements were proposed by the community. Most notably,

the implemented functionalities, initially developed as a separate feature, were

included as an additional tool within the project related to a single user, as

discussed in Section 5.3.

These changes also led to the introduction of other modifications. The first

version of the code included an option to disable user statistics by changing

a parameter in the configuration file, which became useless when the features

were included in a separate tool, and was therefore removed. Moreover, the dis-

cussion involved several developers in order to identify a way to automatically

install the newly created tool on the projects related to previously existing

users. The discussion led to the decision to set it as an anchored tool, a tool

which is automatically installed when a user accesses a project which doesn’t

include it yet. During the review process, some errors in provided tests, related

to missing updates following the developed modifications, were also identified

1http://sourceforge.net/p/allura/git/merge-requests/7/

90

6.2 Using collected metrics to uncover social structures

and fixed. Another required change was related to the registration date, which

was initially considered to be equal to the date of creation of the object in-

cluding user statistics, and later became exactly equal to the user’s registration

date on the forge.

Finally, the code related to organizations was submitted in February 2013

and is currently under discussion by the community, as well as the code allow-

ing to gather statistics related to single organizations.

A positive evaluation of the software emerges from its real exploitation.

In fact, those proposed tools which have been accepted by the community

are now installed on SourceForge.net, making them available to a worldwide

audience, by means of one of the most popular software forges in the world,

hosting more than 300,000 projects with cumulative daily downloads exceeding

4,000,000 units. By using our software, GeekNet Media, the Dice Holdings Inc.

company owning SourceForge.net, certified the industrial value of the devel-

oped software, using it for its commercial purposes. As discussed in Section 4.1,

contributions like the ones provided in this thesis represent the main reason

why a company releases the code adopted for its commercial purposes: our

tools allowed Allura to evolve by including innovative contributions developed

by external contributors, without any additional cost for the company itself.

6.2 Using collected metrics to uncover social

structures

In order to evaluate the relevance of the data collected through the developed

tools, we also tried to assess the impact of our work on a study conducted at

the VU University in Amsterdam by Damian A. Tamburri, Patricia Lago and

Hans van Vliet, and aimed at uncovering latent social structures in software

development [42]. The social structure of a community is often unknown,

and it repeatedly changes over time. Moreover, each different kind of social

structure is related to a different set of barriers, affecting the development of

the project and potentially compromising its success. Therefore, being aware

of a community’s social structure allows to identify potential problems and

critical situations which can affect its results.

91

Evaluation

In other words, data which effectively supports the identification of a com-

munity’s social structure can have a strong impact on awareness within the

community. As a result, we evaluated the impact of our tools by considering

whether collected data is useful or not with respect to the identification of

communities social structures.

6.2.1 Introduction to the study on social structures

Tamburri, Lago and van Vliet introduced a classification of different social

communities. In particular, different kinds of social structures were identified

by studying articles available in literature, and a detailed description for each

of them has been provided. As a result of the study, each class of social

structures was related to a key attribute, which allows to uniquely distinguish it

from the remaining ones. Moreover, they defined a set of additional attributes

characterizing every social community, defining its additional features.

Starting from these results, they provided a classification tree, allowing to

identify a social community based on a set of questions to be answered by

members of the community itself. Figure 6.1 shows the described decision

tree, outlining the set of proposed questions and listing the considered kinds

of organizations.

Figure 6.1: Decision tree adopted to classify a social community.

92

6.2 Using collected metrics to uncover social structures

6.2.2 Classification of social structures based on our

data

In order to evaluate the collected metrics, we chose a subset of four of the listed

kinds of social communities: Formal Networks, Informal Networks, Informal

Communities and Networks of Practice. The remaining ones were considered

not relevant in the scope of open source software, because they are mainly

related to co-located teams, groups of people developing proprietary software,

or communities pursuing different goals.

After analyzing the selected classes of social communities, we proposed a

set of metrics to evaluate their key-attributes. These metrics could therefore

be useful in allowing to automatically classify an organization, identifying the

kind of social community to which it belongs, and helping the organization

itself to detect changes in its social community, as well as to identify barriers

affecting its performances. We also considered a set of additional attributes

for each social structure. Attributes were based on the classification provided

by Tamburri [41].

The definition of these metrics was based on the Goal Question Metric

(GQM) approach, which prescribes the adoption of a top-down process. The

first step is represented by the conceptual level, consisting of the definition of

the goals specifying the reason why the measurement is performed, the adopted

point of view, and the quantity to be measured. The operational level leads

to the definition of a set of questions allowing to characterize what we need to

measure, keeping in mind the goal of the measurement itself. Finally, a set of

metrics is defined, by identifying those quantitative variables which allow to

answer the previously defined questions [32]. The metrics obtained with this

methodology will be discussed in the remainder of this chapter.

Proposed metrics are based both on data previously available on the Allura

forge and on data collected through our additional tools. In particular, the

newly introduced tools, which were described in Chapter 5, provide details

about users and organizations, and gather statistics about their previous work

and experience.

We also defined a set of thresholds allowing to answer the given questions,

starting from collected measures. In order to identify hese threshold, we com-

pared the statistics related to 5 different projects hosted on SourceForge.net.

93

Evaluation

In particular, the projects we considered for this purpose were Allura and

four additional projects which were listed by SourceForge within the section

“Projects of the Month”, created within the website in order to increase visi-

bility of good quality software developed by means of the forge.

6.2.3 Formal Networks

Formal Networks (FNs) are organizations characterized by the presence of

formality as a key-attribute, meaning that interaction dynamics and status of

the members are predefined in a formal manner.

Therefore, as summarized in Table 6.1, two main attributes allow us to

identify formal networks: formality and membership status. The table also

includes citations from the considered study to highlight the underlying rea-

son why each single attribute was identified. The symbol * denotes the key-

attribute for the considered class of social community.

Attribute Rationale cited from [41]

Formality* In Formal networks memberships and interaction dynamics are explicitly

“made” formal by corporate sponsors. Each site needs to be governed

with clear role definitions and responsibilities.

Membership status Members are rigorously selected and prescribed.

Table 6.1: Attributes identifying Formal Networks (FNs).

To evaluate formality within a group, we proposed a set of different metrics,

including the governance level, which is an indicator of whether the develop-

ment process is mainly driven by the organization or not, and the hierarchiza-

tion degree, showing how members differ from each other with respect to their

roles.

A formal network will thus be characterized by a high governance level.

In order to infer the governance level, we decided to calculate the number

of milestones assigned to the project and to relate it to the lifetime of the

project itself. In fact, each milestone represents a different phase of the de-

velopment process. Therefore, if several milestones are defined, it means that

there is a strong planning activity driving the evolution of the project itself,

thus highlighting that specific governance mechanisms are applyed.

Formality also implies a high hierarchization degree. By computing the

number of actually used groups of users, each of which is related to a differ-

94

6.2 Using collected metrics to uncover social structures

Goal

Purpose Measure

Issue The formality of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Is there a high hierarchization degree?

Metrics
M1 Number of non-empty groups of members’ permissions

M2 Average Max % of members of the same organization within a level

of permission

Question Q2 Is there a high governance level?

Metrics M3 Number Milestone / ProjectLifeTime

Table 6.2: GQM, formality of organization.

ent set of permissions, we can estimate the hierarchization degree. In fact,

a high number of groups suggests that there is a hierarchical structure, in

which administrators represent the top-level users, but several other roles are

included at different levels of the hierarchy. Another metric related to the

hierarchization degree is the concentration of members belonging to the same

organization within a single group of permissions. If all the members of the

same organization are concentrated within a unique level, the hierarchy is

considered to be well defined. The metrics related to formality are listed in

Table 6.2.

According to our experience, the hierarchy degree can be considered to

be high when the number of permission groups exceeds 2, or an average of

80% of the users of the same organization are concentrated within a single

group. Appendix B includes a list of the values of the metrics we gathered and

computed to determine the level of governance in the considered projects.

Among considered projects, ProjectLibre has a significantly higher formal-

ity level with respect to the reamining ones. In particular, ProjectLibre, which

is quite recent, has 0.03 milestones per day, meaning that, on average, a new

milestone is created every 33 days. Based on collected results, we can state

that an organization has a high level of governance if, on average, at least 0.02

new milestones are created every day.

Another attribute of Formal Networks is represented by the rigor adopted

to select the members of the community. This attribute will be referred to as

Membership importance. The results of the GQM approach applied to this

attribute are summarized in Table 6.3.

95

Evaluation

Goal

Purpose Measure

Issue The Membership importance within

Object The organization

Viewpoint From the external observer point of view

Question Q1 Are non-members allowed to access the project?

Metrics M1 Private project

Table 6.3: GQM, membership importance within organization.

In order to understand the importance of membership, it is necessary to

verify wheter non-members are allowed to access the project and actively par-

ticipate in its evolution. In case the project is private, it means that a selection

process is adopted to filter contributing members. Therefore, the metric Mem-

bership importance, has a value of “yes” or “no”.

Obviously, all the projects we analysed are public, since we would otherwise

not have been able to collect data about them. Nevertheless, we can intuitively

claim that membership is important for all those projects which have the metric

“Private project” equal to “yes”.

6.2.4 Informal Networks

As represented in Table 6.4, the key-attribute for informal networks is repre-

sented by informality in communication between the involved members. Infor-

mality is expressed by the presence of social and informal interactions between

developers. In other words, informal networks are looser networks of individu-

als, that come in contact as a consequence of the common interest in the same

project. Therefore, it is fundamental for the success of the community to build

a cohesion out of initially weak relationships.

Attribute Rationale cited from [41]

Informality* The key differentiating attribute for INs is the type of interaction that

binds its members. Interaction [...] is intended as a social and informal

interaction between individuals. INs can be seen as looser networks of

ties between individuals that happen to come in contact in the same

context. Its success is solely based on the emergent cohesion its

members have.

Opennes Anyone can join an IN, since there are no formal subscription processes.

Non-governance Finally, an IN differs from other types since it does not use governance

practices.

Table 6.4: Attributes identifying Informal Networks (INs).

96

6.2 Using collected metrics to uncover social structures

Goal

Purpose Measure

Issue The informality of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Are there loose ties among members?

Metrics
M1 Average number of projects in which two members have previously

collaborated

M2 Maximum % of members of the same organization

Table 6.5: GQM, informality of organization.

Informality is the result of loose ties among members. In order to establish

whether there is a relationship between two members, namely a continuative

collaboration involving them, we believe it is possible to consider the number

of projects they both contributed to as core developers. In fact, frequent

interactions between two developers usually results from a formal relationship

between them. Therefore, a community is informal when its members don’t

have a significant number of previous collaborations. Moreover, ties-strength

is related to the involvement of community members within an organization:

if the community members don’t belong to the same organization, ties among

them are looser than ties among communities in which all the developers belong

to the same organization. Table 6.5 highlights the GQM process adopted to

define the metrics related to informality.

In particular, we believe that ties within a community can be considered

loose when the average number of projects to which a couple of members

of the community itself have collaborated together does not exceed 1, and

the maximum percentage of community members of the same organization

represents no more than 5% of the involved developers.

Another attribute of informal networks is openness. As explained in Table

6.6, the metric allowing to understand the degree of openness of a community

is represented by the level of permissions granted to non-members. If external

developers are allowed to directly change the code of the project, for example,

it means that the community is very open; on the other hand, communities

which deny external users the pemission to post messages are very closed.

The openness degree of the community is therefore represented by the

permission level granted to external users (“Read”, “Create”, “Update” or

“Admin”). Obviously, the openness degree is high if the permission is differ-

ent from “Read”. According to our experience, there aren’t projects granting

97

Evaluation

Goal

Purpose Measure

Issue The non-governance of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Is there a low governance level?

Metrics M1 Number of Milestone / ProjectLifeTime

Table 6.7: GQM, non-governance of organization.

“Admin” permissions to non-members, since this would violate basic security

policies. Moreover, external developers do not need this permission to fully

participate in the project.

Goal

Purpose Measure

Issue The openness of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Are non-members allowed to actively participate in the project?

Metrics M1 Non-member permission

Table 6.6: GQM, openness of organization.

Informal networks are also characterized by the lack of governance. This

means that there isn’t a strict policy to control the development of the process.

The reduced use of milestones is a possible indiciator of such situation. There-

fore, as summarized in Table 6.7, the metric represented by the ratio between

the number of milestones and the life time of the project can be considered

for that purpose. This metric is computed as described in Section 6.2, and

the same threshold previously defined can be applyed: an organization has the

attribute non-organization when it has a low number of milestones, namely it

has an average of no more than 0.02 milestones per day.

6.2.5 Networks of Practice

The attributes characterizing a Network of Practice (NoP) are listed in Table

6.8.

98

6.2 Using collected metrics to uncover social structures

Attribute Rationale cited from [41]

Dispersion* [...] “geodispersion” is a differentiator to identify a NoP. NoPs have a

high geodispersion, i.e. they can span geographical and time distances

alike.

Self-organization CoPs and NoPs share the characteristics of being emergent and

self-organizing.

Openness In principle anyone can join it without selection of candidates.

Self-similarity NoP comprises [...] participants engaged in a shared practice or common

topic of interest.

Size NoP comprises a larger [...] group of participants.

Table 6.8: Attributes identifying Networks of Practice (NoPs).

The key-attribute for a NoP is dispersion among developers. Dispersion

within a team could be evaluated by considering geo-cultural distance as a

metric. Geo-cultural distance is based on the geographical distance between

developers, as well as on cultural differences among members of the community.

The implemented tools allow each user to state his or her country and city

of residence, as well as the time zone in which the user is located. This data

allows us to estimate the distance separating members co-working in a team.

The average physical distance within a community is obtained by considering

the geographic distance between the coordinates of the city of reference of the

time zone of developers. These coordinates are defined by the IANA, which was

adopted by our tool as the standard set of time zones among which developers

are allowed to choose.

Obviously, a large physical distance between members means that there is a

high dispersion among them. In some cases, a limited physical distance among

the members of a community is counterbalanced by very relevant cultural

differences, which could have an equally important impact on the results of

the community’s efforts.

In order to estimate the cultural distance, we decided to consider the indices

defined by Hofstede in a study on cultural dimensions conducted for IBM from

1967 to 1973 [22]. These indices, which are defined for each single country, are

as follows:

• Power Distance Index (PDI), representing the propensity of members

with less power to accept an unequal power distribution;

99

Evaluation

• Individualism Index (II), which measures the members’ propensity to

focus on a small group of people or to work with the whole community;

• Masculinity Index (MI), a value indicating the propensity of members to

maintain gender discrimination;

• Uncertainty Avoidance Index (UAI), measuring the propensity of mem-

bers to accept uncertainty;

• Long-Term Orientation Index (LTOI), which represents the propensity

of members to exhibit future-oriented behaviors.

Therefore, for each couple of community members, it is possible to estimate

their cultural distance by computing the weighted average of the deviation

between the values of the given indices for their countries.

As an example, we considered the Allura community, computing the com-

munity’s physical and cultural dispersion. There is a quite high dispersion

within the community, with an average distance between committers of 4926

Km and a standard deviation of about 3199.5 Km. Generally speaking, we be-

lieve that an organization is highly dispersed when it has an average distance

among its members exceeding 4000 Km.

Similar considerations result from the analysis of cultural distance. By

computing it for Allura committers, we obtained a value of approximately

15.4%, with a standard deviation of 13%. Since the maximum cultural distance

among two members is equal to 40%, we can consider 15% as a threshold

above which a community is dispersed. Therefore, according to our analysis,

the Allura community has a quite high cultural dispersion.

Other attributes characterizing a NoP are self-organization, meaning that

collaborating members freely decide how to organize themselves and their

work, and self-similarity, resulting in communities whose members share com-

mon skills and interests. We identified a low degree of hierarchization and

a low level of governance control as conditions showing the presence of self-

organization, while self-similarity can be evaluated by considering the sim-

ilarity between the topics of interest and the stated skills of collaborating

developers. The metrics, together with the outcome obtained by applying the

GQM approach, are listed in Table 6.11 and Table 6.10, respectively.

100

6.2 Using collected metrics to uncover social structures

Goal

Purpose Measure

Issue The dispersion of

Object The organization

Viewpoint From the external observer point of view

Question Q1 What is the physical distance among the organization’s members?

Metrics
M1 Average timezone distance between two members

M2 Standard deviation of the timezone distance between two members

Question Q2 What is the cultural distance among the organization’s members?

Metrics
M3 Average cultural distance between two members

M4 Standard deviation of the cultural distance between two members

Table 6.9: GQM, dispersion of organization.

Goal

Purpose Measure

Issue The self-similarity of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Is there a common background among members?

Metrics M1 Max % of members that share a particular skill

Question Q2 Is there a common experience among members?

Metrics M2 Max % of members that participated to projects belonging to a

particular topic

Table 6.10: GQM, self-similarity of organization.

101

Evaluation

Goal

Purpose Measure

Issue The self-organization of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Is there a low hierarchization degree?

Metrics
M1 Number of non-empty groups of member’s permissions

M2 Average Max % of member of the same organization within a level of

permission

Question Q2 Is there a low governance level?

Metrics M3 Number of Milestones / ProjectLifeTime

Table 6.11: GQM: self-organization of organization.

Goal

Purpose Measure

Issue The size of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Are there many active members involved in the project?

Metrics M1 # of active members

Table 6.12: GQM, size of organization.

In particular, in order to be considered self-similar, a community needs

to show a very high percentage of members with the same skill. Based on

considerations from the projects we analysed and on our experience, we decided

to fix this percentage to a value of 90%.

NoPs also show openness as a further attribute: members are allowed to

enter the community without any formal process or admission.

Finally, NoPs are usually groups including a high number of people, there-

fore the attribute size was considered as the last relevant attribute for a Net-

work of Practice. This attribute can be simply evaluated through a metric

expressing the number of project members, as highlighterd in Table 6.12.

In order to calculate the number of active members, we have considered

those developers with the largest contribution, namely the ones whose total

contribution is at least equal to 50% of the entire contributions to the project.

The values collected for the projects we considered are included in Appendix

B. Given the distribution of these values, we decided to define the size of an

organization as “big” if the number of active members is greater than 10.

102

6.2 Using collected metrics to uncover social structures

6.2.6 Informal Communities

The attributes of informal communities are summarized in Table 6.13.

Attribute Rationale cited from [41]

Engagement*

The key differentiating attribute for ICs is the high degree of member

engagement. The success of the IC is exclusively tied to members’

engagement since their effort is what drives the community to expand.

Self-organization
They interact informally [...]. One characteristic which also differentiates

ICs from other communities is the assumption of self-organization.

Self-similarity

ICs are usually sets of [...] with a common interest, often closely

dependent on their practice [...] on a common history or culture (eg

shared ideas, experience etc).

Dispersion

Their localization is necessarily dispersed so that the community can

reach a wider audience. [...] They interact [...] usually across unbound

distances.

Table 6.13: Attributes identifying Informal Communities (ICs).

Engagement of community members is the key-attribute which identifies an

Informal Community (IC). In order to evaluate the engagement, metrics related

to each member’s participation are needed. For that purpose, we considered

the metric resulting from the per-month number of posts and responses sent by

the group’s members, since it clearly represents a measure of the involvement

of the community in discussions. The metric also considers the number of

active members, so that average individual efforts are computed.

Unique commenters of the community are members with a higher number of

contributions if related to the one of the remaining members. Therefore, unique

commenters are a group of supporters who significantly contribute pursuing

the success of the project and its popularity outside the community itself,

and they can be identified by comparing the amount of contributions they

submitted to the total number of contributions.

The same computation can be applied to organizations instead of single

users. This allows us to identify those organizations which have greater visi-

bility within the community.

Moreover, the number of comments belonging to a thread, as well as the

average per-month number of messages posted within the thread, allows us

to evaluate the interest gathered by the discussions related to the project.

Considering the breadth of each discussion thread is also useful to understand

103

Evaluation

the engagement of the community, since it shows whether the discussion is alive

or not, and it indicates the thread’s impact on the members of the community.

The amount of threads that generate from a post further contribute to un-

derstand the involvement of community members and the value they recognize

to a discussion thread.

Finally, contributors may show interest in a discussion simply by subscrib-

ing to the discussion itself. In that case, members don’t directly contribute to

the thread, but their subscription indicates an interest in being in the know.

Therefore, the number of subscriptions to feeds and events related to a discus-

sion can also be considered as an indicator to evaluate the engagement within

the community.

All these metrics were defined by applying the GQM approach, as reported

in Table 6.14.

Given the values included in Appendix B, we can claim that engagement

within a community is high if, on average, each member posts no less than

30 comments per-month. Moreover, a member is considered to be a unique

commenter if he or she is responsible for 30% of contributions or more. In case

there are at least a user and an organization which are unique commenters,

engagement within the community can be considered significant.

The size of a discussion thread is considered high if, on average, each thread

has at least 3.5 comments, or there are at least 0.1 comments per month for

each thread, on average. Given our experience, the average number of dis-

cussion spread from a thread post is high if it exceeds 0.5. In most cases, in

fact the number of discussion spreads from a thread is 0 or 1. For what con-

cerns subscriptions, we did not have any data allowing us to estimate reliable

thresholds.

Beyond engagement, other non-key attributes contributing to characterize

an informal community are self-similarity and self-organization, which have

already been introduced in Section 6.2.5. Finally, dispersion was considered as

an attribute of ICs, since members of an informal community usually operate in

several different locations. Therefore, a high value of the metrics related to the

dispersion attribute, which have been discussed in Section 6.2.5, characterizes

informal communities.

104

6.2 Using collected metrics to uncover social structures

Goal

Purpose Measure

Issue The engagement of

Object The organization

Viewpoint From the external observer point of view

Question Q1 Is there a high contribution in terms of comments?

Metrics M1 Average per-month comments / # of active members

Question Q2 Are there many unique commenters within the project?

Metrics
M2 Total # of members that are unique commenters

M3 Total # of organizations that are unique commenters

Question Q3 Which is the size of the discussion thread?

Metrics

M4 Average # of thread comments

M5 Average per-month # of thread comments

M6 Average # of discussions spread from a thread’s post

Question Q4 Are there many subscripions within the project?

Metrics M7 Total # of artifact subscriptions

Table 6.14: GQM, engagement of organization.

6.2.7 Results

The previously exposed analysis resulted in the introduction of 21 different

metrics, which have been discussed in the previous sections.

The data which is required to compute some of the listed metrics was made

available with the introduction of the new tools. In particular:

• The introduction of additional details about each developer allows to

compute metrics related to geographic and cultural distance.

• The shared knowledge among community members can be evaluated

thanks to the newly introduced skills profile, which allows each user

working on the forge to self-assess his capabilities.

• The UserStats tool allows to gather data about per-user comments. This

is necessary to evaluate most of the metrics needed to assess the engage-

ment of the community and the number of active members.

• In order to evaluate the concept of hierarchization, it is necessary to

consider user’s membership within organizations. This concept was in-

troduced by the tool OrganizationStats, discussed in Section 5.2.

105

Evaluation

• Similarly, involvement of users within organizations is also relevant for

computing ties-strength. Users of the forge can be provided with this

data thanks to the tool OrganizationStats, described in Section 5.2.

Therefore, this analysis highlights that the computation of 14 out of 21 iden-

tified metrics strictly depends on the introduction of the new tools, while the

remaining ones can be obtained by computing data already available on the

forge, either publicly available or not. Moreover, the key-attributes for each

one of the considered social structures are based on one or more of the 14

metrics depending on the newly implemented tools.

Finally, by considering the results we obtained from the metrics we collected

on our sample of projects hosted on SourceForge.net, we can classify these

projects with respect to the social structures of the communities which are de-

veloping them. In particular, the ProjectLibre community can be considered

as a Formal Network, since it exhibits a high governance level. Instead, the

high engagement of the communities supporting the projects Allura, Kiwix and

jStock, suggests that they are Informal Communities. More in details, Allura

is the community with the highest engagement among the considered ones.

Finally, DOSBox has a very large community with a low level of engagement,

indicating that its community could be a Network of Practice. However, the

analysis should also considered its member’s dispersion but, since the commu-

nity is not using the tools we introduced to include personal details on user

profiles, it was not possible to compute it.

In conclusion, this analysis allows us to understand that the implemented

tools collect data which is relevant to identify latent social structures within

communities on the forge, therefore contributing to create awareness about

the most relevant barriers potentially affecting the results of the work itself.

This means that provided data can have a strong impact on the awareness of

potential problems affecting open source communities.

106

Chapter 7

Conclusions and future work

The work presented in this thesis demonstrated that the world of open source

software is a very heterogeneous context, in which different interests and back-

grounds coexist. Nonetheless, open source communities are often affected by

the same issues, mostly related to the global approach adopted for the software

development, which results in a lack of awareness of the community itself.

By conducting a survey, we confirmed the heterogeneity of open source

communities. This also allowed us to identify the need of developers involved in

the open source field to receive more details about the communities supporting

the open source projects they contribute to, they would like to join, or they

are interested in as final users.

Gathered requirements led us to develop some tools to be installed within a

forge adopted for the development of open source software itself. These tools,

aimed at providing awareness-related data to the members of open source

communities, were developed by directly interacting with an existing open

source community, allowing us to better understand the open source context

and its needs.

All the functional requirements gathered through the survey were satisfied

by the implemented tools, except for the evaluation of the quality of previous

open source projects developed by existing organizations. In fact, these re-

quirement would require the collection and computation of data related to a

single project, which was left out of scope since it is still under development

by a separate team collaborating with the Allura community.

The interaction with the open source community also led us to develop a

critical point of view about the mechanisms adopted to manage contributions

Conclusions and future work

and to take decisions within the community itself. Our work revealed that

many different policies and organizational models can be adopted by open

source communities, and that some communities suffer from a lack of clear

documentation about these details. Nonetheless, each developer’s skills and

contributions are generally the driving factor to recognize members with more

power, ensuring the adoption of meritocratic mechanisms within the commu-

nity.

Transparency is often regarded as one of the features characterizing open

source communities, but the big amount of data, together with its dispersion,

is at the basis of the need to provide developers and final users with tools

allowing to summarize available information.

Therefore, we believe that the implementation of tools to compute metrics

about personal statistics increased transparency within the community, making

it easier to access available data, and it potentially enforces the adoption of

meritocracy within the community. the introduction of personal details and

the inclusion of the concept of organization also allows to address some issues

related to trust by making it clear what’s the technical and organizational

background of the community supporting offered products.

The evaluation of our work presented in Chapter 6 allows us to conclude

that provided data is actually important in order to understand the commu-

nity which is developing a software project, as well as the barriers potentially

preventing the success of the project itself.

Finally, the positive reception that the open source community developing

Allura reserved to the implemented tools confirmed us that our work actually

meets the requirements of existing open source communities and represented

a positive feedback about the quality of our code.

With the goal to further increase awareness and enforce trust in open source

communities, several evolutions of the presented work are possible. First of

all, the most relevant strength of the implemented tools gathering statistics

consists in its expandability. Additional tools gathering statistics from different

perspectives could be implemented. For example, it is possible to provide users

with tools monitoring single projects and showing metrics about its evolution

and status, by integrating the work of the team which is currently developing

these functionalities in collaboration with the Allura community.

Moreover, the most obvious evolution of the implemented features consists

108

in implementing matching tools with the purpose to make it easier for a de-

veloper to discover which projects are interesting for him or her, as well as

allowing existing communities to recruit new members among the ones with

the required skills, interests, experience and background. In particular, the

proposed tool should allow to provide these functionalities by querying the

database, considering data directly provided by developers within their per-

sonal profile, as well as by using the developer’s statistics and the connection

of the user with existing organizations.

Additional future work related to our thesis could be represented in the im-

plementation of a tool allowing to automatically uncover the underlying social

structure of each open source community, according to the metrics discussed

in Section 6.2. This tool would contribute increasing awareness within the

community and, most of all, it would help in highlighting the potential barri-

ers generally affecting communities characterized by the same social structure,

thus providing communities with a way to forecast their issues and to take

actions to avoid them affecting the outcome of their work.

Finally, thresholds defined for the metrics we introduced to identify latent

social structures could be refined by gathering a more reliable sample of data

about existing projects.

109

Appendix A

Survey

This Appendix includes the complete list of question composing the ques-

tionnaire we created to gather requirements from members of open source

communities, as well as the detailed results we collected through the survey

itself.

A.1 The questionnaire

In this section, the full template of the questionnaire created to conduct our

survey is included.

On-line Survey: Increasing Awareness in Open Source

project development

This is a simple and brief on-line survey dedicated to people participating in open

source projects. It consists in few questions on the current practices adopted

while developing open source software. Answering these questions will take only

a few minutes of your time, but it will be very useful to us in order to design

and implement tools increasing awareness in open source project delevopment.

* Mandatory

Survey

Section 1: You and your organization

This sections contains a few questions helping us to understand your back-

ground and which kind of organization (enterprises, research institutions,

public bodies, ...) you belong to.

1. How long have you been working in open source projects? *

(a) Less than 3 years

(b) 3 years or more

2. When was the last time you contributed developing open source

projects? *

(a) Less than one month ago

(b) Between one month and six months ago

(c) Between six months ago and one year ago

(d) More than one year ago

(e) Never

3. What kind of organization do you work for? *

(a) Research and/or education institution

(b) For-profit business

(c) Foundation or other non-profit organization

(d) No-one (independent developer)

(e) Other:

4. What is your role in the research and/or education institution? *
This question was only presented to those respondents who answer (a) in question 3.

(a) Professor or researcher

(b) Student

(c) Administrative assistant

(d) Other:

112

A.1 The questionnaire

5. What is your role in the business? *
This question was only presented to those respondents who answer (b) in question 3.

(a) Top-responsibility role (e.g.: CEO, board of directors member,

...)

(b) Manager with technical responsibility (e.g.: CIO, Project man-

ager, product manager, ...)

(c) Developer

(d) Other:

6. What is your role in the non-profit organization? *
This question was only presented to those respondents who answer (c) in question 3.

(a) Top-responsibility role (e.g.: executive director, community

leader, ...)

(b) Developer

(c) Other:

7. How long have you been working for you current employer? *
This question was only presented to those respondents who did not answer (d) in question 3.

(a) Less than 3 years

(b) 3 years or more

8. What size is your organization? *
This question was only presented to those respondents who did not answer (d) in question 3.

(a) A small organization (up to 50 members)

(b) A medium-size organization (51-250 members)

(c) A big organization (at least 251 members)

113

Survey

9. What software categories does your organization develop? *
This question was only presented to those respondents who did not answer (d) in question 3.

More than one answer was allowed.

(a) Home & Entertainment (applications designed primarily for use

in or for the home, or for entertainment)

(b) Content & Communication (office productivity suites, multime-

dia players, file viewers, Web browsers, collaboration tools, ...)

(c) Education & Reference (educational software, learning support

tools, ...)

(d) Operations & Professionals (ERPs, CRMs, SCMs, applications

for specific business uses, ...)

(e) Product manufacturing and service delivery (software to sup-

port specific product manufacturing and service delivery)

(f) Platform & Management (operating systems, security, infras-

tructure services, hardware components controllers, ...)

(g) Mobile apps

(h) Web applications

10. In which geographic area(s) does the developing team(s) of your or-
ganization work? *
This question was only presented to those respondents who did not answer (d) in question 3.

More than one answer was allowed.

(a) Africa

(b) Asia

(c) Europe

(d) Northern America

(e) Oceania

(f) South America

114

A.1 The questionnaire

Section 2: Partnership and coordination

This section includes questions focused on the organization of your team(s)

and on the cooperation with external organizations, like companies, uni-

versities or foundations.

1. Does your organization usually cooperate with other organizations
or individuals? *
This question was only presented to those respondents who did not answer (d) in question 3

of section 1.

(a) No one

(b) Organizations only

(c) Freelance programmers only

(d) Both organizations and freelance programmers

2. Which elements do you consider while choosing the organizations or
freelance programmers to cooperate with? *
This question was only presented to those respondents who did not answer (a) in question 1

of section 2. For each sub-question, only one answer was allowed.

• The organization/freelance programmer has participated in

many previous open source projects

(a) I don’t consider it

(b) It’s a secondary element

(c) It’s quite important

(d) It’s very important

• The organization/freelance programmer is contributing fre-

quently to other projects

(a) I don’t consider it

(b) It’s a secondary element

(c) It’s quite important

(d) It’s very important

115

Survey

• The organization/freelance programmer has been working in

projects similar to the one to be developed

(a) I don’t consider it

(b) It’s a secondary element

(c) It’s quite important

(d) It’s very important

• Success and popularity of projects developed or co-developed by

the organization/freelance programmer

(a) I don’t consider it

(b) It’s a secondary element

(c) It’s quite important

(d) It’s very important

3. When you chose an organization/freelance as a partner, what was
your main goal? *
This question was only presented to those respondents who did not answer (a) in question 1

of section 2.

(a) Reducing the individual effort needed to develop your projects

(b) Taking advantage of your partner’s specific skills and experience

(c) Both of them

4. How do you manage the cooperation with your partners? *
This question was only presented to those respondents who did not answer (a) in question 1

of section 2.

(a) You outsource to your partner

(b) Your partner outsources to you

(c) The two of you collaborate on a peer-to-peer basis

116

A.1 The questionnaire

5. How do the involved members usually cooperate in multi-
organizations projects? *
This question was only presented to those respondents who did not answer (a) in question 1

of section 2.

(a) A unique team is created, including all the involved members

(b) Different teams are created, each one including members from

the same organization only

(c) Different teams are created, and some of them include members

form different organizations

6. What factors drive the adoption of open-source in your company? *
This question was only presented to those respondents who did not answer (d) in question 3

of section 1. More than one answer was allowed.

(a) It’s cheap

(b) It’s readily available

(c) The community

(d) The originality of the idea

(e) Other:

7. Are there any open-source policies adopted by your company con-
cerning the interoperability with the open-source communities? *
This question was only presented to those respondents who did not answer (d) in question 3

of section 1.

(a) No, the company doesn’t have any policy

(b) Protocol-based interoperability is adopted with the open source

community

(c) Open interoperability is adopted with the open source commu-

nity

(d) Other interoperability models are adopted with the open source

community

117

Survey

Section 3: Organizations and Users Information

This section includes questions related to the relevance of features of orga-

nizations and users contributing in open source software projects.

1. The most known forges (e.g.: SourceForge) do not show personal de-

tails about developers and their association to specific organizations.

How do you consider providing this informations? *

(a) Extremely important

(b) Important

(c) Not so important

(d) Useless

2. What kind of information do you think an organization should pub-
lish on a software forge hosting its projects? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3. More than one answer was allowed.

(a) A description of the organization and of its activity

(b) The organization’s website and other contact information

(c) The organization’s dimension

(d) The organization’s main working areas

(e) The list of projects coordinated or entirely developed by the

organization

(f) The list of projects to which the organization has participated,

even with a minor role

(g) The contacts of all the organization members participating in

the project

(h) The roles of all the organization members participating in the

project

118

A.1 The questionnaire

3. How do you regard the possibility of consulting an indicator of skills
and previous experiences of the users? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3.

(a) Useless

(b) Not so relevant

(c) Quite relevant

(d) Very important

4. How do you regard the possibility of consulting an indicator of skills
and previous experiences of the organizations? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3.

(a) Useless

(b) Not so relevant

(c) Quite relevant

(d) Very important

5. Would you trust an automatic system for collecting reputation met-
rics, that is statistics on previous work developed by users and orga-
nizations? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3.

(a) Not at all

(b) Not much

(c) Pretty much

(d) Completely

6. Assuming that your reputation metrics are available, what kind of
visibility would you like them to have? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3.

(a) I would use them only for internal assessment

(b) I would make them available to external users

(c) They should not be available even for internal use

119

Survey

7. Which kind of data should be included in user’s reputation metrics? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3. More than one answer was allowed.

(a) Contribution frequency in terms of changed/added lines of code

per month

(b) Contribution frequency in terms of posted messages per month

(c) Total number of LOC written or modified by the user

(d) Total number of messages posted by the user

(e) Total number of bugs reported by the user

(f) Total number of bugs assigned to the user and percentage of

solved ones

(g) Average time needed to solve a bug

(h) Separated evaluation of the total amount of contribution for

each programming language

(i) Separated evaluation of the total amount of contribution for

each category of projects

(j) Indication of preference for specific categories of projects

8. Which kind of data should be included in an organization’s reputation
metrics? *
This question was only presented to those respondents who did not answer (d) in question 1

of section 3. More than one answer was allowed.

(a) Aggregated figures of the data acquired for each team member

(b) The projects coordinated or entirely developed by the organiza-

tion

(c) The projects in which the organization participates, even with

a minor role

(d) The quality and success of the devolped projects

(e) The organization’s previous partners

120

A.2 Detailed results

Section 4: Open comments

Do you have something else you want to tell us?

1. Write here any comment or additional information that you think

it’s useful to us (optional).

A.2 Detailed results

This section includes a complete report of the results gathered by means of

the survey. The following tables include presented questions and, together

with the number and the percentage of respondents selecting each one of the

proposed answers.

Question 1.1: How long have you been working in open source projects?

Answer Respondents Percentage

Less than 3 year 31 62%

3 years or more 19 38%

Total 50

Table A.1: Results of the survey: Section 1, 1st question.

Question 1.2: When was the last time you contributed developing open source

projects?

Answer Respondents Percentage

Less than one month ago 17 34%

Between one month and six months ago 8 16%

Between six months ago and one year ago 4 8%

More than one year ago 15 30%

Never 6 12%

Total 50

Table A.2: Results of the survey: Section 1, 2nd question.

121

Survey

Question 1.3: What kind of organization do you work for?

Answer Respondents Percentage

Research and/or education institution 23 46%

For-profit business 13 26%

Foundation or other non-profit organization 2 4%

No-one (independent developer) 11 22%

Other 1 2%

Total 50

Table A.3: Results of the survey: Section 1, 3rd question.

Question 1.4: What is your role in the research and/or education institution?

Answer Respondents Percentage

Professor or researcher 9 46%

Student 14 26%

Administrative assistant 0 0%

Other 0 0%

Total 23

Table A.4: Results of the survey: Section 1, 4th question.

Question 1.5: What is your role in the business?

Answer Respondents Percentage

Top-responsibility role 2 15%

Manager with technical responsibility 2 15%

Developer 8 62%

Other 1 8%

Total 13

Table A.5: Results of the survey: Section 1, 5th question.

Question 1.6: What is your role in the non-profit organization?

Answer Respondents Percentage

Top-responsibility role 0 0%

Developer 2 100%

Other 0 0%

Total 2

Table A.6: Results of the survey: Section 1, 6th question.

Question 1.7: How long have you been working for you current employer?

Answer Respondents Percentage

Less than 3 year 24 62%

3 years or more 15 38%

Total 39

Table A.7: Results of the survey: Section 1, 7th question.

122

A.2 Detailed results

Question 1.8: What size is your organization?

Answer Respondents Percentage

A small organization (up to 50 members) 16 41%

A medium-size organization (51-250 members) 8 21%

A big organization (at least 251 members) 15 38%

Total 39

Table A.8: Results of the survey: Section 1, 8th question.

Question 1.9: What software categories does your organization develop?

Answer Respondents Percentage

Home & Entertainment 3 8%

Content & Communication 10 26%

Education & Reference 12 31%

Operations & Professionals 16 41%

Product manufacturing and service delivery 4 10%

Platform & Management 6 15%

Mobile apps 8 21%

Web applications 18 46%

Total respondents (multiple choices allowed) 39

Table A.9: Results of the survey: Section 1, 9th question.

Question 1.10: In which geographic area(s) does the developing team(s)
of your organization work?

Answer Respondents Percentage

Africa 1 3%

Asia 6 15%

Europe 38 97%

Northern America 8 21%

Oceania 0 0%

Southern America 3 8%

Total respondents (multiple choices allowed) 39

Table A.10: Results of the survey: Section 1, 10th question.

Question 2.1: Does your organization usually cooperate with other organizations

or individuals?

Answer Respondents Percentage

No one 6 15%

Organizations only 13 33%

Freelance programmers only 3 8%

Both organizations and freelance programmers 17 44%

Total 39

Table A.11: Results of the survey: Section 2, 1st question.

123

Survey

Question 2.2, part 1: Which elements do you consider while choosing the

organizations or freelance programmers to cooperate with? - The

organization/freelance programmer has participated in many previous open

source projects

Answer Respondents Percentage

I don’t consider it 3 9%

It’s a secondary element 8 24%

It’s quite important 16 48%

It’s very important 6 18%

Total 33

Table A.12: Results of the survey: Section 2, 2nd question, part 1.

Question 2.2, part 2: Which elements do you consider while choosing the

organizations or freelance programmers to cooperate with? - The

organization/freelance programmer is contributing frequently to other projects

Answer Respondents Percentage

I don’t consider it 3 9%

It’s a secondary element 11 33%

It’s quite important 17 52%

It’s very important 2 6%

Total 33

Table A.13: Results of the survey: Section 2, 2nd question, part 2.

Question 2.2, part 3: Which elements do you consider while choosing the

organizations or freelance programmers to cooperate with? - The

organization/freelance programmer has been working in projects similar to the

one to be developed

Answer Respondents Percentage

I don’t consider it 1 3%

It’s a secondary element 5 15%

It’s quite important 15 45%

It’s very important 12 36%

Total 33

Table A.14: Results of the survey: Section 2, 2nd question, part 2.

124

A.2 Detailed results

Question 2.2, part 4: Which elements do you consider while choosing the

organizations or freelance programmers to cooperate with? - Success and

popularity of projects developed or co-developed by the organization/freelance

programmer

Answer Respondents Percentage

I don’t consider it 4 12%

It’s a secondary element 9 27%

It’s quite important 15 45%

It’s very important 5 15%

Total 33

Table A.15: Results of the survey: Section 2, 2nd question, part 4.

Question 2.3: When you chose an organization/freelance as a partner, what was

your main goal?

Answer Respondents Percentage

Reducing the individual effort needed to develop your

projects

3 9%

Taking advantage of your partner’s specific skills and

experience

7 21%

Both of them 23 70%

Total 33

Table A.16: Results of the survey: Section 2, 3rd question.

Question 2.4: How do you manage the cooperation with your partners?

Answer Respondents Percentage

You outsource to your partner 8 24%

Your partner outsources to you 4 12%

The two of you collaborate on a peer-to-peer basis 21 64%

Total 33

Table A.17: Results of the survey: Section 2, 4th question.

Question 2.5: How do the involved members usually cooperate in

multi-organizations projects?

Answer Respondents Percentage

A unique team is created, including all the involved

members

12 36%

Different teams are created, each one including

members from the same organization only

11 33%

Different teams are created, and some of them include

members form different organizations

10 30%

Total 33

Table A.18: Results of the survey: Section 2, 5th question.

125

Survey

Question 2.6: What factors drive the adoption of open-source in your company?

Answer Respondents Percentage

It’s cheap 22 56%

It’s readily available 27 69%

The community 24 62%

The originality of the idea 6 15%

Other 4 10%

Total respondents (multiple choices allowed) 39

Table A.19: Results of the survey: Section 2, 6th question.

Question 2.7: Are there any open-source policies adopted by your company

concerning the interoperability with the open-source communities?

Answer Respondents Percentage

No, the company doesn’t have any policy 21 54%

Protocol-based interoperability is adopted with the

open source community

11 28%

Open interoperability is adopted with the open source

community

5 13%

Other interoperability models are adopted with the

open source community

2 5%

Total 39

Table A.20: Results of the survey: Section 2, 7th question.

Question 3.1: The most known forges (e.g.: SourceForge) do not show personal

details about developers and their association to specific organizations. How do

you consider providing this informations?

Answer Respondents Percentage

Extremely important 5 10%

Important 22 44%

Not so important 11 22%

Useless 12 24%

Total 50

Table A.21: Results of the survey: Section 3, 1st question.

126

A.2 Detailed results

Question 3.2: What kind of information do you think an organization should

publish on a software forge hosting its projects?

Answer Respondents Percentage

A description of the organization and of its activity 25 66%

The organization’s website and other contact

information

27 71%

The organization’s dimension 7 18%

The organization’s main working areas 18 47%

The list of projects coordinated or entirely developed

by the organization

19 50%

The list of projects to which the organization has

participated, even with a minor role

16 42%

The contacts of all the organization members

participating in the project

14 37%

The roles of all the organization members

participating in the project

16 42%

Total respondents (multiple choices allowed) 38

Table A.22: Results of the survey: Section 3, 2nd question.

Question 3.3: How do you regard the possibility of consulting an indicator of

skills and previous experiences of the users?

Answer Respondents Percentage

Useless 1 3%

Not so relevant 6 16%

Quite relevant 22 58%

Very important 9 24%

Total 38

Table A.23: Results of the survey: Section 3, 3rd question.

Question 3.4: How do you regard the possibility of consulting an indicator of

skills and previous experiences of the organizations?

Answer Respondents Percentage

Useless 1 3%

Not so relevant 5 13%

Quite relevant 22 58%

Very important 10 26%

Total 38

Table A.24: Results of the survey: Section 3, 4th question.

127

Survey

Question 3.5: Would you trust an automatic system for collecting reputation

metrics, that is statistics on previous work developed by users and organizations?

Answer Respondents Percentage

Not at all 1 3%

Not much 13 34%

Pretty much 18 47%

Completely 6 16%

Total 38

Table A.25: Results of the survey: Section 3, 5th question.

Question 3.6: Assuming that your reputation metrics are available, what kind of

visibility would you like them to have?

Answer Respondents Percentage

I would use them only for internal assessment 12 32%

I would make them available to external users 25 66%

They should not be available even for internal use 1 3%

Total 38

Table A.26: Results of the survey: Section 3, 6th question.

Question 3.7: Which kind of data should be included in user’s reputation metrics?

Answer Respondents Percentage

Contribution frequency in terms of changed/added

lines of code per month

28 74%

Contribution frequency in terms of posted messages

per month

20 53%

Total number of LOC written or modified by the user 18 47%

Total number of messages posted by the user 16 42%

Total number of bugs reported by the user 23 61%

Total number of bugs assigned to the user and

percentage of solved ones

25 66%

Average time needed to solve a bug 15 39%

Separated evaluation of the total amount of

contribution for each programming language

19 50%

Separated evaluation of the total amount of

contribution for each category of projects

18 47%

Indication of preference for specific categories of

projects

15 39%

Total respondents (multiple choices allowed) 38

Table A.27: Results of the survey: Section 3, 7th question.

128

A.2 Detailed results

Question 3.8: Which kind of data should be included in an organization’s

reputation metrics?

Answer Respondents Percentage

Aggregated figures of the data acquired for each team

member

18 47%

The projects coordinated or entirely developed by the

organization

22 58%

The projects in which the organization participates,

even with a minor role

14 37%

The quality and success of the devolped projects 29 76%

The organization’s previous partners 6 16%

Total respondents (multiple choices allowed) 38

Table A.28: Results of the survey: Section 3, 8th question.

129

Appendix B

Sample metrics gathered from

OSS projects

This Appendix includes the list of data gathered from a set of existing projects

hosted on SourceForge. As exlained in Section 6.2, these data were collected

with the purpose to study the distribution of metrics defined to identify latent

social structures and to help us in defining thresholds for the classification of

existing communities.

B.1 Distributions of projects contribution

The following tables include, for each single project, the distribution of contri-

butions among the most active developers. For each project, the 25 developers

which contribute the most to the project itself are listed, showing the number

of posts they submitted, as well as the percentage of total existing posts that

they created, and the cumulative sum of contributions.

Sample metrics gathered from OSS projects

Member # contributions % contributions
% cumulative sum

contributions

1st Member 6283 28.05% 28.05%

2nd Member 2192 9.78% 37.83%

3th Member 1713 7.65% 45.48%

4th Member 1208 5.39% 50.87%

5th Member 1105 4.93% 55.80%

6th Member 925 4.13% 59.93%

7th Member 919 4.10% 64.03%

8th Member 898 4.01% 68.04%

9th Member 842 3.76% 71.80%

10th Member 698 3.12% 74.92%

11th Member 694 3.10% 78.02%

12th Member 406 1.81% 79.83%

13th Member 333 1.49% 81.31%

14th Member 243 1.08% 82.40%

15th Member 226 1.01% 83.41%

16th Member 216 0.96% 84.37%

17th Member 145 0.65% 85.02%

18th Member 103 0.46% 85.48%

19th Member 89 0.40% 85.88%

20th Member 86 0.38% 86.26%

21th Member 32 0.14% 86.40%

22th Member 28 0.12% 86.53%

23th Member 27 0.12% 86.65%

24th Member 26 0.12% 86.76%

25th Member 22 0.10% 86.86%

Other members 2943 13,14% 100.00%

Total 22402 100.00%
Table B.1: Distribution of contributions in Allura.

132

B.1 Distributions of projects contribution

Member # contributions % contributions
% cumulative sum

contributions

1st Member 757 25,67% 25.67%

2nd Member 103 3.49% 29.16%

3th Member 92 3.12% 32.28%

4th Member 91 3.09% 35.37%

5th Member 83 2.81% 38.18%

6th Member 77 2.61% 40.79%

7th Member 77 2.61% 43.40%

8th Member 76 2.58% 45.98%

9th Member 71 2.41% 48.39%

10th Member 42 1.42% 49.81%

11th Member 41 1.39% 51.20%

12th Member 35 1.19% 52.39%

13th Member 33 1.12% 53.51%

14th Member 30 1.02% 54.53%

15th Member 30 1.02% 55.54%

16th Member 25 0.85% 56.39%

17th Member 24 0.81% 57.21%

18th Member 24 0.81% 58.02%

19th Member 22 0.75% 58.77%

20th Member 20 0.68% 59.44%

21th Member 19 0.64% 60.09%

22th Member 19 0.64% 60,73%

23th Member 18 0.61% 61.34%

24th Member 17 0.58% 61.92%

25th Member 16 0.54% 62.46%

Other members 1107 37.54% 100.00%

Total 2949 100.00%
Table B.2: Distribution of contributions in DOSBox.

133

Sample metrics gathered from OSS projects

Member # contributions % contributions
% cumulative sum

contributions

1st Member 1340 61.41% 61.41%

2nd Member 34 1.56% 62.97%

3th Member 32 1.47% 64.44%

4th Member 21 0.96% 65.40%

5th Member 21 0.96% 66.36%

6th Member 20 0.92% 67.28%

7th Member 19 0.87% 68.15%

8th Member 18 0.82% 68.97%

9th Member 11 0.50% 69.48%

10th Member 11 0.50% 69.98%

11th Member 10 0.46% 70.44%

12th Member 10 0.46% 70.90%

13th Member 10 0.46% 71.36%

14th Member 9 0.41% 71.77%

15th Member 9 0.41% 72.18%

16th Member 9 0.41% 72.59%

17th Member 8 0.37% 72.96%

18th Member 8 0.37% 73.33%

19th Member 8 0.37% 73.69%

20th Member 7 0.32% 74.01%

21th Member 7 0.32% 74.34%

22th Member 7 0.32% 74.66%

23th Member 7 0.32% 74.98%

24th Member 7 0.32% 75.30%

25th Member 6 0.27% 75.57%

Other members 533 24.43% 100.00%

Total 2182 100.00%
Table B.3: Distribution of contributions in JStock.

134

B.1 Distributions of projects contribution

Member # contributions % contributions
% cumulative sum

contributions

1st Member 2156 81.02% 81.02 %

2nd Member 63 2.37% 83.39%

3th Member 53 1.99% 85.38%

4th Member 44 1.65% 87.03%

5th Member 43 1.62% 88.65%

6th Member 43 1.62% 90.27%

7th Member 24 0.90% 91.17%

8th Member 13 0.49% 91.66%

9th Member 12 0.45% 92.11%

10th Member 11 0.41% 92.52%

11th Member 10 0.38% 92.90%

12th Member 10 0.38% 93.27%

13th Member 9 0.34% 93.61%

14th Member 9 0.34% 93.95%

15th Member 8 0.30% 94.25%

16th Member 8 0.30% 94.55%

17th Member 7 0.26% 94.81%

18th Member 6 0.23% 95.04%

19th Member 6 0.23% 95.26%

20th Member 6 0.23% 95.49%

21th Member 6 0.23% 95.72%

22th Member 5 0.19% 95.90%

23th Member 5 0.19% 96.09%

24th Member 5 0.19% 96.28%

25th Member 4 0.15% 96.43%

Other members 95 3.57% 100.00%

Total 2661 100.00%
Table B.4: Distribution of contributions in Kiwix.

135

Sample metrics gathered from OSS projects

Member # contributions % contributions
% cumulative sum

contributions

1st Member 69 28.16% 28.16%

2nd Member 47 19.18% 47.35%

3th Member 14 5.71% 53.06%

4th Member 12 4.90% 57.96%

5th Member 9 3.67% 61.63%

6th Member 6 2.45% 64.08%

7th Member 5 2.04% 66.12%

8th Member 5 2.04% 68.16%

9th Member 5 2.04% 70.20%

10th Member 4 1.63% 71.84%

11th Member 3 1.22% 73.06%

12th Member 3 1.22% 74.29%

13th Member 3 1.22% 75.51%

14th Member 3 1.22% 76.73%

15th Member 3 1.22% 77.96%

16th Member 3 1.22% 79.18%

17th Member 3 1.22% 80.41%

18th Member 3 1.22% 81.63%

19th Member 2 0.82% 82.45%

20th Member 2 0.82% 83.27%

21th Member 2 0.82% 84.08%

22th Member 2 0.82% 84.90%

23th Member 2 0.82% 85.71%

24th Member 2 0.82% 86.53%

25th Member 2 0.82% 87.35%

Other members 31 12.65% 100.00%

Total 245 100.00%
Table B.5: Distribution of contributions in ProjectLibre.

136

B.2 Metrics of projects

B.2 Metrics of projects

Table B.6 summarizes the metrics computed for a set of sample open source

projects hosted at SourceForge.net.

Metric Allura ProjectLibre Kiwix DOSBox Jstock

% of active memb.
(AMs)

1.13% 5.36% 1.30% 2.91% 0.37%

of active
members

5 3 1 11 1

Project life time
(days)

985 196 2401 3975 2049

Total # of
milestones

10 6 3 19 1

Governance
level

0.0101 0.0306 0.0012 0.0048 0.0005

Project life time
(months)

32.83 6.53 80.03 132.50 68.30

Total # of
comments

22402 245 2661 2949 2182

Average per-month
comments

682.23 37.50 33.25 22.26 31.95

Average
per-month

comments / #
of AMs

136.46 12.50 33.25 2.02 31.95

of unique
commenter-
members

0 0 1 0 1

Total # of threads 6070 134 1096 741 708
Average # of

thread
comments

3.69 1.83 2.43 3.98 3.08

Average
per-month # of

thread
comments

0.112 0.280 0.030 0.030 0.045

Table B.6: Computation of metrics for a set of sample OSS projects.

The geographical distance among committers of the Allura project was also

computed, based on our knowledge of the location of the community members.

Results, expressed in kilometers, are summarized in Table B.7.

Member B C D E F G H I J

A 7780 7913 7323 9295 503.2 1150 857.7 7323 7322
B - 476.8 1589 3589 8239 7025 7737 1589 952.8
C - - 1974 3982 8341 7092 7996 1974 1419
D - - - 3069 7797 6706 7226 0.1 636.6
E - - - - 9798 9483 8869 3069 3069
F - - - - - 1366 1181 7797 7796
G - - - - - - 1871 6706 6705
H - - - - - - - 7226 7225
I - - - - - - - - 636.6

Table B.7: Distance values among committers of the Allura projects.

Finally, Table B.8. shows the cultural distance among each couple of mem-

bers of the Allura community.

137

Sample metrics gathered from OSS projects

Member B C D E F G H I J

A 24.20% 24.20% 24.20% 24.20% 0.00% 15.65% 22.00% 24.20% 24.20%
B - 0.00% 0.00% 0.00% 24.20% 35.64% 13.09% 0.00% 0.00%
C - - 0.00% 0.00% 24.20% 35.64% 13.09% 0.00% 0.00%
D - - - 0.00% 24.20% 35.64% 13.09% 0.00% 0.00%
E - - - - 24.20% 35.64% 13.09% 0.00% 0.00%
F - - - - - 15.65% 22.00% 24.20% 24.20%
G - - - - - - 35.54% 35.64% 35.64%
H - - - - - - - 13.09% 13.09%
I - - - - - - - - 0.00%

Table B.8: Cultural Distance among committers of the Allura projects.

138

List of Figures

2.1 Most relevant issues in Global Software Development. 10

2.2 Complexity and barriers in a GSE project [31]. 11

2.3 Power distribution among centers of power [30]. 17

2.4 Conceptual architecture of the tool ALERT. 23

3.1 Survey results. Background of survey respondents. 33

3.2 Survey results. Roles of survey respondents within their orga-

nizations. 34

3.3 Survey results. Size of the organizations of interviewees and

duration of respondent’s involvement within them. 35

3.4 Survey results. Background of organizations in which intervie-

wees operate. 36

3.5 Survey results. Elements considered while selecting collaborators. 38

3.6 Survey results. Collaborations within open source communities. 39

3.7 Survey results. Open source-related policies. 40

3.8 Survey results. Relevance of single details about organizations

developing open source software. 41

3.9 Survey results. Relevance of indicators about skills and experi-

ence of organizations and developers. 41

3.10 Survey results. Relevance of single indicators about users and

organizations developing open source software. 42

4.1 The external tools in Allura. 46

4.2 The architecture of the Allura event-based system. 48

4.3 The development process adopted by the Allura community to

implement new features. 53

LIST OF FIGURES

5.1 UML class diagram representing the additional personal details

of a user. 58

5.2 UML class diagram representing the controllers to manage per-

sonal details of a user. 59

5.3 Screenshot representing a personal profile including the newly

introduces personal details . 60

5.4 Screenshot representing the form to update a user’s set of skills 61

5.5 UML class diagram representing the introduced concept of or-

ganization. 64

5.6 Screenshot showing the public profile of an organization on the

forge. 65

5.7 Screenshot representing the tool to manage organization’s in-

volvement within a project hosted on the forge. 66

5.8 Screenshot representing the Web page allowing to edit a logged

user’s enrollments. 67

5.9 State diagram outlining the state transitions related to a user’s

membership in an organization. 68

5.10 State diagram outlining the state transitions related to an or-

ganization’s involvement in a project. 69

5.11 Class diagram representing the abstract class EventsListener. . . 70

5.12 Screenshot representing the tables summarizing user statistics

about registration and contributions. 72

5.13 Screenshot representing the Web page listing the topics of the

projects to which a user participates. 73

5.14 Screenshot representing the Web page listing statistics about

the contributions submitted by a user in a single category of

projects. 74

5.15 Screenshot representing the table which includes data about a

user’s commits for each category of projects. 75

5.16 Screenshot representing the table which includes data about a

user’s artifacts for each category of projects. 75

5.17 Screenshot representing the table which includes data about a

user’s tickets for each category of projects. 75

5.18 Screenshot representing the rankings of a user’s contribution

within the forge. 76

140

LIST OF FIGURES

5.19 Class diagram representing the model adopted to store user

statistics. 77

5.20 Screenshot representing the tables summarizing organization

statistics about registration and contributions. 82

5.21 Screenshot representing the tables summarizing membership

data and per-member contributions within an organization. . . . 83

5.22 Screenshot representing data about projects involvement for a

single organization, as well as the organization’s topics of interest. 84

5.23 Screenshot representing indicators comparing the contributions

of an organization with contributions of the other ones registered

on the forge. 84

5.24 UML class diagram representing the class adopted to store

statistics about a single organization. 85

6.1 Decision tree adopted to classify a social community. 92

141

List of Tables

3.1 Functional requirements gathered by means of the survey. 44

6.1 Attributes identifying Formal Networks (FNs). 94

6.2 GQM, formality of organization. 95

6.3 GQM, membership importance within organization. 96

6.4 Attributes identifying Informal Networks (INs). 96

6.5 GQM, informality of organization. 97

6.7 GQM, non-governance of organization. 98

6.6 GQM, openness of organization. 98

6.8 Attributes identifying Networks of Practice (NoPs). 99

6.9 GQM, dispersion of organization. 101

6.10 GQM, self-similarity of organization. 101

6.11 GQM: self-organization of organization. 102

6.12 GQM, size of organization. 102

6.13 Attributes identifying Informal Communities (ICs). 103

6.14 GQM, engagement of organization. 105

A.1 Results of the survey: Section 1, 1st question. 121

A.2 Results of the survey: Section 1, 2nd question. 121

A.3 Results of the survey: Section 1, 3rd question. 122

A.4 Results of the survey: Section 1, 4th question. 122

A.5 Results of the survey: Section 1, 5th question. 122

A.6 Results of the survey: Section 1, 6th question. 122

A.7 Results of the survey: Section 1, 7th question. 122

A.8 Results of the survey: Section 1, 8th question. 123

A.9 Results of the survey: Section 1, 9th question. 123

A.10 Results of the survey: Section 1, 10th question. 123

LIST OF TABLES

A.11 Results of the survey: Section 2, 1st question. 123

A.12 Results of the survey: Section 2, 2nd question, part 1. 124

A.13 Results of the survey: Section 2, 2nd question, part 2. 124

A.14 Results of the survey: Section 2, 2nd question, part 2. 124

A.15 Results of the survey: Section 2, 2nd question, part 4. 125

A.16 Results of the survey: Section 2, 3rd question. 125

A.17 Results of the survey: Section 2, 4th question. 125

A.18 Results of the survey: Section 2, 5th question. 125

A.19 Results of the survey: Section 2, 6th question. 126

A.20 Results of the survey: Section 2, 7th question. 126

A.21 Results of the survey: Section 3, 1st question. 126

A.22 Results of the survey: Section 3, 2nd question. 127

A.23 Results of the survey: Section 3, 3rd question. 127

A.24 Results of the survey: Section 3, 4th question. 127

A.25 Results of the survey: Section 3, 5th question. 128

A.26 Results of the survey: Section 3, 6th question. 128

A.27 Results of the survey: Section 3, 7th question. 128

A.28 Results of the survey: Section 3, 8th question. 129

B.1 Distribution of contributions in Allura. 132

B.2 Distribution of contributions in DOSBox. 133

B.3 Distribution of contributions in JStock. 134

B.4 Distribution of contributions in Kiwix. 135

B.5 Distribution of contributions in ProjectLibre. 136

B.6 Computation of metrics for a set of sample OSS projects. 137

B.7 Distance values among committers of the Allura projects. 137

B.8 Cultural Distance among committers of the Allura projects. . . 138

144

Bibliography

[1] The alert project. http://alert-project.eu/.

[2] The open source definition. http://opensource.org/osd.

[3] Debian constitution. http://www.debian.org/devel/constitution.

en.html, October 2007.

[4] Debian new members corner. http://www.debian.org/devel/join/

newmaint.en, August 2012.

[5] What is free software? http://www.gnu.org/philosophy/free-sw.en.

html, July 2012.

[6] M.A. aris Eykelhoff. Increasing awareness in global software development.

8th Twente Student Conference on IT, Enschede, jan 2008.

[7] Christian Bartelt, Manfred Broy, Christoph Herrmann, Eric Knauss,

Marco Kuhrmann, Andreas Rausch, Bernhard Rumpe, and Kurt Schnei-

der. Orchestration of global software engineering projects - position pa-

per. In Proceedings of the 2009 Fourth IEEE International Conference

on Global Software Engineering, ICGSE ’09, pages 332–337, Washington,

DC, USA, 2009. IEEE Computer Society.

[8] Li-Te Cheng, Susanne Hupfer, Steven Ross, and John Patterson. Jazzing

up eclipse with collaborative tools. In Proceedings of the 2003 OOPSLA

workshop on eclipse technology eXchange, eclipse ’03, pages 45–49, New

York, NY, USA, 2003. ACM.

[9] Kevin Crowston, Kangning Wei, Qing Li, U. Yeliz Eseryel, and James

Howison. Coordination of free/libre open source software development.

BIBLIOGRAPHY

In In Proceedings of the International Conference on Information Systems

(ICIS 2005), Las Vegas, pages 181–193, 2005.

[10] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared

workspaces. In Proceedings of the 1992 ACM conference on Computer-

supported cooperative work, CSCW ’92, pages 107–114, New York, NY,

USA, 1992. ACM.

[11] Mica R. Endsley. Toward a theory of situation awareness in dynamic

systems. Human Factors: The Journal of the Human Factors and Er-

gonomics Society, 37:32–64(33), March 1995.

[12] Jerry Z. Gao, Cris Chen, Yasufumi Toyoshima, and David K. Leung.

Engineering on the internet for global software production. Computer,

32(5):38–47, May 1999.

[13] Giampaolo Garzarelli and Roberto Galoppini. Capability coordination in

modular organization: Voluntary fs/oss production and the case of debian

gnu/linux. Industrial Organization 0312005, EconWPA, December 2003.

[14] D. M. German. Decentralized open source global software development,

the gnome experience. Journal of Software Process: Improvement and

Practice, 8(4):201–215, 2004.

[15] J.M. Gonzáles-Barahona, J.S. Pascual, D.M. Jiménez, and G. Robles.

Introduction to Free Software. Universitat Oberta de Catalunya, 2009.

[16] M.T. Hansen and H. Baggesen. From cmmi and isolation to scrum, agile,

lean and collaboration. In Agile Conference, 2009. AGILE ’09., pages 283

–288, aug. 2009.

[17] Ahmed E. Hassan. The road ahead for mining software repositories. Fron-

tiers of Software Maintenance, 2008. FoSM 2008, pages 48–57.

[18] James D. Herbsleb. Global software engineering: The future of socio-

technical coordination. In 2007 Future of Software Engineering, FOSE

’07, pages 188–198, Washington, DC, USA, 2007. IEEE Computer Society.

[19] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E.

Grinter. An empirical study of global software development: distance and

146

BIBLIOGRAPHY

speed. In Proceedings of the 23rd International Conference on Software

Engineering, ICSE ’01, pages 81–90, Washington, DC, USA, 2001. IEEE

Computer Society.

[20] James D. Herbsleb and Deependra Moitra. Global software development.

IEEE Software, pages 16–20, 1999.

[21] G. Hofstede, G.J. Hofstede, and M. Minkov. Cultures and Organi-

zations: Software of the Mind, Third Edition. McGraw-Hill Compa-

nies,Incorporated, 2010.

[22] Gert Jan Hofstede Michael Minkov Hofstede, Geert. Cultures and Or-

ganizations: Software of the Mind. McGraw-Hill Publishing Company,

2010.

[23] E. Hossain, M.A. Babar, and Hye young Paik. Using scrum in global

software development: A systematic literature review. In Global Software

Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference

on, pages 175 –184, july 2009.

[24] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis,

and J. Rilling. A Linked Data platform for mining software repositories.

Mining Software Repositories (MSR), 2012 9th IEEE Working Conference

on, pages 32–35, june 2012.

[25] Lori Kiel. Experiences in distributed development: A case study. In

Global Software Development, 2003. ICSE 2003. International Conference

on Software Engineering, pages 44 –47, may 2003.

[26] Rafael Kobylinski, Oliver Creighton, Allen H. Dutoit, and Bernd Bruegge.

Building awareness in global software engineering: Using issues as context.

In Workshop on Global Software Development, part of the International

Conference on Software Engineering (ICSE, 2002.

[27] Sang-Yong T. Lee, Hee-Woong Kim, and Sumeet Gupta. Measuring open

source software success. Omega, 37(2):426–438, April 2009.

[28] Bertrand Meyer Julian Tschannen Carlo Ghezzi Martin Nordio,

H.Christian Estler and Elisabetta Di Nitto. How do distribution and

147

BIBLIOGRAPHY

time zones affect software development? a case study on communication.

In 2011 Sixth IEEE International Conference on Global Software Engi-

neering, pages 176 –184, 2011.

[29] Robert Morgan and Frank Maurer. Maseplanner: A card-based dis-

tributed planning tool for agile teams. 2012 IEEE Seventh International

Conference on Global Software Engineering, 0:132–138, 2006.

[30] Ludovico Prattico. Governance of open source software foundations: Who

holds the power? Technology Innovation Management Review, pages 37–

42, 12/2012 2012.

[31] Ita Richardson, Valentine Casey, Fergal McCaffery, John Burton, and

Sarah Beecham. A process framework for global software engineering

teams. Information and Software Technology, 54(11):1175 – 1191, 2012.

[32] Egon Berghout Rini van Solingen. The Goal/Question/Metric Method: a

practical guide for quality improvement of software development. McGraw-

Hill Publishing Company, 1999.

[33] Gregorio Robles, Jesus M. Gonzalez-Barahona, Daniel Izquierdo-

Cortazar, and Israel Herraiz. Tools and Datasets for Mining Libre Soft-

ware Repositories, volume 1, chapter 2, page 24–42. IGI Global, Hershey,

PA, 2011.

[34] Bert Sadowski, Gaby Sadowski-Rasters, and Geert Duysters. Transition

of governance in a mature open software source community: Evidence

from the debian case. Technical report, 2007.

[35] Sundeep Sahay. Global software alliances: the challenge of ’standardiza-

tion’. Scandinavian Journal of Information Systems, 15:3–21, 2003.

[36] R. Sangwan, N. Mullick, and M. Bass. Global Software Development

Handbook. Auerbach Series on Applied Software Engineering Series. Tay-

lor & Francis Group, 2007.

[37] Richard Stallman. Why Open Source misses the point of Free Software.

Viewpoints, 52(6):31–33, 2009.

148

BIBLIOGRAPHY

[38] Ljiljana Stojanovic, Felipe Ortega, Santiago Dueñas, and Luis Cañas-

Dı́az. Alert: Active support and real-time coordination based on event

processing in open source software development. In Software Maintenance

and Reengineering 2011 (CSMR), page 359–362, Oldenburg, Germany,

04/2011 2011. IEEE, IEEE.

[39] D.A. Tamburri. Going global with agile service networks. In Software

Engineering (ICSE), 2012 34th International Conference on, pages 1475

–1478, june 2012.

[40] D.A. Tamburri, I.S. Razo-Zapata, H. Fernandez, and C. Tedeschi. Sim-

ulating awareness in global software engineering: A comparative analysis

of scrum and agile service networks. In Principles of Engineering Service

Oriented Systems (PESOS), 2012 ICSE Workshop on, pages 1 –7, june

2012.

[41] Damian A. Tamburri. Organizational social structures for software engi-

neering. ACM Computing Surveys, 46(1), 2013.

[42] Damian A. Tamburri, Patricia Lago, and Hans van Vliet. Uncover-

ing latent social communities in software development. IEEE Software,

30(1):29–36, 2013.

[43] Damian Andrew Tamburri and Patricia Lago. Supporting communica-

tion and cooperation in global software development with agile service

networks. In Proceedings of the 5th European conference on Software ar-

chitecture, ECSA’11, pages 236–243, Berlin, Heidelberg, 2011. Springer-

Verlag.

[44] G. Vonkrogh and S. Spaeth. The open source software phenomenon: Char-

acteristics that promote research. The Journal of Strategic Information

Systems, 16(3):236–253, September 2007.

[45] David A. Wheeler. Why open source software / free software (oss/fs, floss,

or foss)? look at the numbers! http://www.dwheeler.com/oss_fs_why.

html, 2007.

149

