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3.1 Marijà Architecture . . . . . . . . . . . . . . . . . . . . . . . . 48
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Abstract

With Web 2.0 growth of the amount of data accessible on the web has oc-
curred. We live in the Big Data, Big Users, and Cloud Computing era. In
this situation, storage solutions such as RDBMS showed their limits concern-
ing the scalability over multiple nodes. Storage systems known as NoSQL
databases are becoming increasingly important because are designed to scale
well. However, they are not the solution to every problem of data manage-
ment. In fact, the lack of standardization of the currently available NoSQL
implementations, force developers to handle low-level data management is-
sues thus resulting in a higher complexity of programming NoSQL compared
to RDBMS solutions. A challenging research objective is therefore to im-
prove the programmability and manageability of NoSQL still keeping their
remarkable characteristics in terms of scalability and capability of handling
large volumes of data. This thesis aims at offering a contribution toward
the achievement of this challenge. In particular, we focus on how to render
relations between entities in a NoSQL still avoiding the need of introducing
join operators that would impair their scalability. We study two different ap-
proaches for doing so, called MinR and MaxR. MinR minimizes data replicas
while MaxR maximizes replicas. Also, we will present a rigorous method-
ology to compare the two strategies. We will expose and motivate a series
of tests designed to investigate interesting aspects of the two techniques and
will provide the results of the test run using two different types of NoSQL
database, MongoDB (a Document-based) and Cassandra (Column-oriented).
The main conclusion is that MaxR better then MinR with sparse relations.
Also, MaxR is the right choice to frequently read small amounts of data.
MinR is good to often maintaining consistency. But from numbers we have
also concluded, for example, that for Cassandra usually MinR is better than
MaxR and, viceversa, for Mongo the MaxR model is the right choice. Finally,
we present an evaluation framework developed for the execution of the tests.
The framework, developed in Microsoft .NET, is easily extensible to use with
other databases and add more tests.
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Estratto

Il web 2.0 ha avuto come effetto una considerevole crescita della mole di
dati fruibile sul web. Viviamo nell’era del Big Data, del Big Users e del
Cloud Computing. In questa situazione, soluzioni di storage tradizionale
quali gli RDBMS mostrano i loro limiti quando è necessario utilizzare sis-
temi distribuiti. Sistemi di storage conosciuti con il termine NoSQL stanno
diventando sempre più importanti. Essi però non sono la soluzione ad ogni
problema di gestione di dati distribuiti. Infatti, la mancanza di meccanismi
standard nelle soluzioni esistenti pone lo sviluppatore di fronte a problemi di
basso livello nella gestione dei dati che ne complica la programmazione. Un
obbiettivo di ricerca interessante è migliorare questi aspetti che sono carenti
nei NoSQL, pur mantenendo la loro notevole propensione alla scalabilità.
Questa tesi vuole offrire un contributo in questo verso. In particolare ci fo-
calizzeremo sull’introduzione del concetto di relazione tra entità nei NoSQL
senza l’utilizzo delle operazioni di join, punto debole della scalabilità. Pro-
poniamo due tecniche alternative per questo, MinR e MaxR. MinR minimizza
le repliche dei dati, MaxR le massimizza. Presenteremo anche una metodolo-
gia rigorosa per confrontare i modelli. Esporremo e motiveremo una serie di
test progettati per valutare gli aspetti più interessanti delle due tecniche
e riporteremo i risultati di questi test ottenuti eseguendoli su due differenti
database NoSQL: MongoDB (un Document-based) e Cassandra (un Column-
oriented). Il risultato principale sarà che MaxR è migliore se utilizzato con
relazioni sparse e se si necessità di frequenti letture di piccole quantità di
dati. MinR è migliore se si vuole mantenere la consistenza. Dai risultati dei
test si può anche concludere che per Cassandra è più adatto il modello MinR
e viceversa Mongo si comporta meglio utilizzando MaxR. Verrà infine pre-
sentata una piattaforma di test (Evaluation Framework) per l’esecuzione dei
test. Il framework è sviluppato nell’ambiente Microsoft .NET ed è facilmente
estendibile con nuovi test e per l’utilizzo con diversi database.
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Chapter 1

Introduction

Web is dramatically changing in the last 15 years. The advent of web 2.0 has
resulted in a considerable growth of the amount of accessible data. This is
due to the birth of services where the user has an active role and contributes
to the production of content (social network, public-opinion questionnaires,
etc.). All these data are important to monitor users tastes and habits, so
companies are increasingly interested in tracking them. Today we are in the
Big Data, Big Users, and Cloud Computing era. The result is a huge quantity
of heterogeneous data to be acquired, stored, analyzed and transformed.

In this situation, storage solutions such as traditional RDBMS have showed
their limits when the systems must be distributed over many nodes. Further-
more, the rigidity of Relational Databases structure is not very suitable to
handle heterogeneous or not structured data.

Storage systems known as NoSQL databases are becoming increasingly
important. They are data store systems that are not classifiable as the clas-
sical RDBMS (Relational Database Management System). NoSQL means
“Not SQL” for some and “Not only SQL” for some others. The controversy
lies in the fact that some researchers think that NoSQL databases should
fully replace RDBMS while some others think they should only assist them.
Our opinion is that each application case shows its own peculiarities and that
sometimes NoSQL or RDBMS alone would be the right solution while some
other times they should be used together.

NoSQLs are simpler than RDBMSs, they do not provide many of the com-
plex data management mechanisms that are provided by RDBMS systems,
thus, they are the best choice to store data that do not need this complexity.

In most of cases NoSQL are developed from the ground up to be dis-
tributed, scale out databases. This is a direct consequence of the indepen-
dence between the different collections of objects they store. In a NoSQL
database there is no concept of relation between different objects. So, they
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are independent. There are no constraints between objects and so it is very
simple to split the database in many parts and distribute them over a network
of nodes. Furthermore NoSQLs are best suitable to store heterogeneous and
unstructured data, since they have a flexible schema (schema-free, or semi-
structured schema).

However, NoSQL databases are not the solution to every problem of data
management. In fact, they completely miss a common query language like
SQL in RDBMS. SQL is based on Relational Algebra, a strong mathematical
theory that ensures completeness of the query language and that offers many
optimization techniques to support query execution. It represents one of the
main reasons why the RDBMS systems have acquired increasing importance.
A developer can move from one database system to another with reduced
effort at least for basic operations.

Another lack of NoSQLs is the extreme heterogeneity of the existing solu-
tions for what concerns the organization of the data model, the query model
and the data access recommended patterns. This forces the developer to
handle manually low-level data management issues like indexing, query op-
timizing data structures, relations between objects, and so on. This results
in a higher complexity of NoSQL compared to RDBMS solutions for what
concerns programmability and management of the data store.

A challenging research objective is therefore to improve the programma-
bility and manageability of NoSQLs still keeping their remarkable charac-
teristics in terms of scalability and capability of handling large volumes of
data. This thesis aims at offering a contribution toward the achievement of
this challenge. In particular, we focus on how to render relations between
entities in a NoSQL still avoiding the need of introducing join operators that
would impair their scalability. We study two different approaches for doing
so, called MinR and MaxR.

The work presented in this thesis is part of research project called Marijà.
In particular, the aim of the thesis is to present and compare MinR and MaxR
as the two logical models to manage the relationships between objects on a
single node of the Marijà system. We analyze the single node because we
start from the Marijà project assumption of perfect scalability of a query on
a network of nodes and the full independence of a node from each others.

The models are at two opposite ends of the replication concept. MinR
minimizes data replicas while MaxR stores a copy of entity data in each
relation row to reduce the number of database requests. MinR is very similar
to the way of storing many-to-many relations of the relational model. The
difference is that the same strategy is used to store all kind of relations.
Also, there are no database constraints on the entities existence. Objects
remain independent from the database side and then scalability profile does
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not change. MaxR instead provides all relation data within the same row
of the relation collection. Data are ready to be read but replicas must be
kept in sync and the quantity of data to transfer is bigger than in the MinR
strategy.

We had to compare models and we decided to do it creating algorithms of
the basic CRUD operations on relations. For each identified CRUD operator
we create the algorithms fto execute them on both MinR and MaxR models
and we extract a cost function. In future these functions will be traduced in
a set of cost metrics that will be used to choose the correct logical model for
a particular relation.

Analyzing cost functions we designate a set of experiments aimed to com-
pare models with respect of relation properties and evaluate overall perfor-
mance of the single node.

Tests are executed on two very different concrete NoSQL systems: Mon-
goDB, a Document-based database that maximize performance of the single
machine and Apache Cassandra, a BigData Column-oriented database that
works well with a wide network of nodes. Results of these experiments are
discussed in details and we report the conclusions that we have reached from
these.

The tests are executed with the Evaluation Framework, developed for this
thesis, that consists of the Marijà Worker classes and the Testes classes.

The Marijà Worker is responsible to setup database and perform CRUD
operations on the database. The framework is extensible to support a new
database, a developer must implement the Database Provider, that consists
of three interfaces, one for database configurations and the others for imple-
menting the algorithms for MinR and MaxR models.

The Tester is the benchmark platform. New tests can be implemented
and then added in the Tester to be executed. Tests already implemented are
those that we describe in the thesis.

The Marijà Worker is to be deployed on the Marijà node as low level
executor. Also the Tester is to be deployed on the node and it will use the
functionality of Marijà Worker to perform benchmarks.

Analyzing the results of testing it is possible to choose which model is best
suited to store a given relation and what is the maximum amount of data
that the node can handle (the sharding point). This is the first information
needed to configure a Marijà node.

Original Contributions

This work includes the following original contributions:
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• The definition of two common logical models for relation handling in
NoSQL databases that maintain a high scalability profile. The two
models are meant to be used together in the same database choosing
for each relation what is the best one.
• A complete way for comparing these models in concrete NoSQL imple-

mentations with the following two main objectives: choosing the best
strategy to store a relation with respect its properties and estimating
the maximum quantity of data to store in a single node (before to op-
erate sharding) that is compliant with some performance constraints.
• An extensible Evaluation Framework to benchmark a Marijà node with

an extensible architecture that allows to add custom tests and imple-
ment, with minimal effort, new database provider (to support different
databases).

Outline of the Thesis

This thesis is organized as follows:

• In Chapter 2 we describe the state of the art. First, the reason for
using NoSQL are exposed. Then we present a classification of existing
products with respect to their data model and main elements charac-
terizing NoSQL. Finally, we discuss in details the difference of data
model classes and the most representative products for each class.

• In Chapter 3 we define the problem of introducing relations in the
serialized world of NoSQL. Then we report a small overview of the
Marijà project and the assumption of single node independence from
which this thesis is based.

• In Chapter 4 we present the two alternative models to store relations
on a single Marijà node, MinR and MaxR. Then we propose a rigorous
methodology to compare the models based on CRUD operations. We
present the idea of using the Relational Algebra as bridge model to ob-
tain a complete Read comparison. Finally, we describe the algorithms
of the CRUD operators on both models and we discuss the differences.

• In Chapter 5 we present what tests are to be performed in the case
of concrete NoSQL products and how they are performed. We report
the results of preliminary tests to validate the theoretical differences
found in previous chapter. Then we expose and motivate a set of de-
tailed tests designed to investigate interesting aspects of the two models
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CHAPTER 1. INTRODUCTION

and we provide the results of the test runs using two different types of
NoSQL databases, MongoDB (a Document-based) and Apache Cas-
sandra (Column-oriented).

• Chapter 6 is dedicated to the presentation of the evaluation frame-
work developed for the execution of the experiments. The framework,
developed in Microsoft .NET, is easily extensible for use with other
databases.

• In Chapter 7 we summarize the main results we have achieved and we
describe our personal experience in using NoSQLs. Finally we present
some planned future work.
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Chapter 2

State of the Art

2.1 Introduction

In this chapter the main characteristics of NoSQL databases together with
the background of theories and techniques behind them will be introduced.
Then a classification of NoSQL databases from the data-model perspective
will be presented and discussed with a special focus on the feature-set the
most representative implementations provide.

Some important aspects, like security, costs and others that are not in-
teresting for our purpose and will not be treated.

2.2 Why NoSQL

There are some interesting features that are common to most of the NoSQL
databases:

• Designed for Scalability: as we will describe in next section, the
NoSQL way to store data is perfect for scaling out on many nodes.

• Schema Flexibility: the data schema is not fixed as in RDBMS. It can
efficiently store heterogeneous objects and there is no need of complex
migration to evolve the structure. NoSQL schema can be referred as
no-schema, schema-free or semi-structured schema depending of the
NoSQL data model category. These terms will be explained in data
model descriptions.

• NoSQL as a cache of RDBMS system: NoSQLs store objects and
the objects are identified by a key. This is very similar to what is done
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by a cache. NoSQLs can be used as a cache over a traditional db (cf.
Redis and Memcached in Section 2.4.1).

• Caching Facilitie of NoSQLs: some NoSQLs integrate complex
caching mechanisms to enhance overall performance. They use in-
memory data structures to decrease the latency of operations and then
flush many operations together to a durable storage.

• High Availability Oriented: as we will show in the next sections,
most of the NoSQL databases, at least the Big Data Oriented, has the
High Availability as the main objective. To provide this they do not
guarantee all ACID properties, but use the a relaxed set of properties
named BASE (Basically Available, Soft state, Eventual consistency).

• Cloud Oriented Database: NoSQL databases are becoming increas-
ingly important because they are used largely in the Cloud Infrastruc-
ture as elastic storage. Elastic means that the number of used nodes
are auto-adaptive and this is simpler to do with NoSQLs than with
RDBMS, because of all other points described in this section.

• MapReduce Features: Some NoSQLs integrate the possibility to
distribute queries and other operations over nodes using a MapReduce
algorithm. MapReduce is described in Section 2.3.2.

NoSQL in different scenarios There are many scenarios in which NoSQL
databases fit well. Each NoSQL is suited for some scenarios, but not for all.
The main scenarios are:

• Enterprise Big Data NoSQL: These systems are built to handle a
very huge amount of data and have as main objectives high availability,
scalability and elasticity [20]. Commonly they are not only database
systems but include at least an optimized method to access the file
system or even they are full infrastructures configured for replication
and migration of data. The main representatives of this category are
Amazon DynamoDB and Google BigTable as full services offered in
Amazon Web Services and Google AppEngine cloud ecosystems re-
spectively and Cassandra or Hbase over Hadoop as systems that can
be deployed everywhere.

• Caching NoSQL: In-memory NoSQL databases like Redis and Mem-
cached are perfect for creation of a global cache layer on top of a dis-
tributed database (relational or not) to speedup reads and writes of
entities loaded in memory.
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• RDBMS Replacement NoSQL: In this category I place the NoSQL
databases that provide some features of RDBMS that enable their use
in a general purpose scenario (where RDBMS win). Some of the charac-
teristics we refer to are: manual or automatic indexes for a column (or
attribute in a document context), complex query model, strict consis-
tency, transactions, triggers and so on. The candidates are MongoDB
and RavenDB that are document-based and some others like Scalaris
that can support full ACID properties.

• Specialized scenario NoSQL: Some implementations have unique
features that enable special scenarios, for example CouchDB has an
out-of-the-box online-offline synchronization mechanism that enable a
two-way automatic synchronization between more databases that were
disconnected (network partition) and updated.

In the Table 2.1 we classify the some NoSQL products in different sce-
narios.

Scenarios Matching Databases
Enterprise Big Data DynamoDB

Project Voldemort
Google BigTable
Cassandra
Hbase
Hypertable

Local or Global Caching Memcached
Redis

RDBMS Replacement MongoDB
RavenDB
Scalaris

Specialized scenario CouchDB

Table 2.1: Classification from the Scenario perspective
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2.3 Classification dimensions for NoSQL

2.3.1 Categories of NoSQL from the data model per-
spective

The classification of existing NoSQL databases is not a trivial task. They
have different architectures and features and each of them is suitable for a
specific use. Maybe the most immediate approaches are to compare them
from the usage scenarios and from the data model perspective.

A rich classification of NoSQL Data Models is presented by Stephen Yen
(cf. [44]) and another less detailed one is introduced by Rick Cattel (cf.
[16]) and it is summarized in Table 2.2. Both classifications are good, but
lack an important category, the graph-based databases. We have adopted a
classification similar to the one by Cattel but augmented with a new type of
category, the Graph-based one (cf. Table 2.3).

Our Categories Cattel Categories Yen Categories
Key-Value Key-value Store Key-Value-Cache

Key-Value-Store
Eventually-Consistent K-V-S
Ordered-Key-Value-Store
Data-Structures Server

Document-based Document Stores Document Store
Object Store

Column-oriented Extensible Record Stores Wide Columnar Store
Tuple-store

Graph-based

Table 2.2: Comparison of my taxonomy with the ones by Stephen Yen and
Rick Cattel

2.3.2 Main Elements Characterizing NoSQL

In the next sections these categories will be explained and, for each of them,
some of the major implementations will be described and summarized in
following key points:

• Data-model Category (Data Model) with special variations

• CAP Theorem and Eventual Consistency (CAP): CAP Theorem
choices (CP or AP) and related notes on consistency
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Category Matching Databases
Key-Value Amazon DynamoDB

Project Voldemort
Memcached
Redis
Scalaris

Document-Based CouchDB
MongoDB
RavenDB

Column-Oriented Bigtable
Hbase
Hypertable
Cassandra

Graph-Based Neo4j

Table 2.3: NoSQL Categories Database Matching

• Data Partitioning and Scalability (Partitioning): it is compre-
hensive of both horizontal (sharding) and vertical auto partitioning of
data to scaling on more commodity machine

• MapReduce: MapReduce implementation and server-side code exe-
cution capabilities

• RDBMS Related Features (RDBMS): the common mechanisms
that is present in all RDBMS and that are implemented in the analyzed
NoSQL such as principal and secondary indexes, view materialization,
triggers, transactions, . . .

• Architectural: notes on the architecture of the analyzed NoSQL like,
in instance, the distribution on a network of node or the existence of a
single point of failure in the system

• Other: other interesting features

The Data-model Category point is already introduced in previous para-
graphs and it will be explained in next section. CAP Theorem and Eventual
Consistency, Data Partitioning and Scalability, MapReduce, RDBMS Related
Features points are explained in details in the following paragraphs. Archi-
tectural and Other points do not need ad additional description.
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Data Partitioning and Scalability

As we introduced in the Chapter 1 the RDBMSs have a limited scalability
and they are not well suited for storing unstructured or semi-structured data.

In details, to compose a relation in the RDBMSs, one or more join oper-
ations must be performed and this is why the RDBMSs does not scale well in
a distributed context. Executing join between data located in different nodes
involves a huge data transfer that grows with the growth of nodes number,
breaking down the scalability. Some optimizations exist, like “Semi-Join”
algorithms 1 but the problem is that significant amount of data between
different nodes should still be compared.

NoSQL databases were developed to be distributed, scalable databases.
The main concept of NoSQL (with exception of Graph-oriented, cf. Section
2.4.4) is the independence of each stored data object from everyone else. Data
are serialized in collections and there are no connections from an object to
another. So, partitioning data and getting a scalable database is extremely
easy.

Data can be partitioned horizontally and/or vertically with respect to the
data model properties (the way to store data).

Sharding is an horizontal partitioning of data in a database. Each indi-
vidual partition is referred to as a shard or database shard.

An hashing algorithm on keys is used to split data in more shards, this
hash can be optimized to balance the load on nodes (random partitioner) or
to preserve keys order, enabling range queries (order preserving partitioner).

In the Figure 2.1 we show an example of sharding on a Key-Value struc-
ture, that will be presented in Section 2.4.1. Here we show that different
Key-Value pairs can be stored on different storage nodes.

Vertical partitioning is the alternative to sharding. It consists in dividing
data by columns. For instance, Figure 2.2 shows that the first two columns
of all tuples are stored in node 1 while the last three are stored in node 2.

Horizontal and vertical partitioning can be applied together in particular
cases, like in Column-Oriented NoSQL databases as shown in Section 2.4.3.

CAP Theorem and Eventual Consistency

1the semi-join requires more operations to be performed on local nodes, however the
data transfer rate is reduced [18]
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Figure 2.1: Data Sharding: horizontal data partitioning based by key

Brewer’s CAP Theorem Most of NoSQLs are distributed systems and
we cannot present them without a brief discussion about the CAP theorem.

The idea on which the theorem is based was introduced by Eric Brewer
in 2000 [15]. This conjecture has been formalized in 2002 by Seth Gilbert
and Nancy Lynch [30].

The CAP theorem, also known as Brewer’s CAP theorem, states that it
is impossible for a distributed computing system to simultaneously provide
all three of the following guarantees: Consistency, Availability and Partition
Tolerance (from these properties the CAP acronym has been derived).

• Consistency, all nodes see the same data at the same time

• Availability, a guarantee that every request receives a response about
whether it was successful or failed

• Partition Tolerance, the system continues to operate despite arbitrary
message loss or failure of part of the system that create a netwrok
partition

Only two of the CAP properties can be ensured at the same time. The
resulting three possible combinations are denoted with CA, CP, AP and
for many people CA and CP are equivalent because loosing in Partitioning
Tolerance means a lost of Availability when a partition takes place.

So, the NoSQL databases, acting as distributed systems, must choose
between either support: AP or CP. In the products overview presented in
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Figure 2.2: Data Vertical Partitioning: vertical data partitioning by columns

the next sections we will analyze this choice for each of the described NoSQL.

Eventual Consistency and BASE Properties The main objective of
big NoSQL distributed infrastructures is to ensure high availability even in
the presence of a very high number of fails in the distributed system.

ACID properties provide the consistency choice for partitioned databases.
Ensuring consistency and partition tolerance means loosing of availability (cf
Section 2.3.2). So ACID is not the correct choice for these systems.

The answer is BASE (Basically Available, Soft state, Eventual consis-
tency) [39]. In shorts BASE is an optimistic way to see consistency. For
an interval of time data can be not consistent, but after this interval all re-
turns to consistent. This is the Eventual Consistency concept. We explain
this concept with an example: if we have more copies of the same data in
a distributed database and we want to update them, in the ACID way all
the replica are logically written together. All replicas are in old state before
the execution of the update and all are in new state after this. In the BASE
way instead, there is a time interval in which some replicas are updated and
some others are still in the old version.

To show this behavior a BASE system do not use two-phase locking (or
its distributed version). However, it must ensure that sooner or later all data
return to be consistent (Basically Available).
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MapReduce

MapReduce is an emerging solution to distribute algorithms over a large
network of nodes.

MapReduce is not new in the context of distributed computing, but it has
been re-discovered brought back to the scene thanks to Google. In [27] Google
presents the Map Reduce idea and its own implementation. This is assumed
to run on a large cluster of machine. In [27], we read “a typical MapReduce
computation processes many terabytes of data on thousands of machines” and
“Programmers find the system easy to use: hundreds of MapReduce programs
have been implemented and upwards of one thousand MapReduce jobs are
executed on Google’s clusters every day”.

Google had the merit to demonstrate that a “simple” infrastructure com-
posed of several clusters combined with a MapReduce paradigm is the right
way of looking at big data problems.

Influenced by the Google experience, an Apache project started with
the idea to realize an open-source product similar to the Google one. As
a result, Hadoop [14] has been released. It is a complete framework for
distributed storage and processing of large data sets across clusters. It is
mainly composed of:

• Hadoop Distributed File System: A distributed file system

• Hadoop YARN: Job scheduler and cluster resources manager

• Hadoop MapReduce: Hadoop MapReduce environment

Moreover, it includes many other projects 100% compliant with the basic
architecture.

Nowadays, Hadoop has became the open source solution used by private
users as well as by big ICT company. For instance, Amazon offers VMs with
complete Hadoop solution, Cloudera offers Cloud solution based on Hadoop
and also Microsoft dismissed Dryad, its research project for writing parallel
and distributed programs, to support Hadoop.

In the NoSQL context MapReduce is very popular. Google use it in
Big Table to distribute the work on the nodes. HBase and Hypertable do
the same with the underlying Hadoop layer. Also Cassandra can be in-
tegrated with Hadoop. MongoDB use it to distribute query an any other
task. CouchDB use it for querying and for creating and updating its in-
dexes. RavenDB use it only for indexing.

MapReduce is on the way to become the standard framework of algorithm
distribution.
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RDBMS Related Features

As we described in Chapter 1, an important issue in NoSQL is the lack of
a common query and manipulation language valid for all NoSQL databases,
like SQL is for RDBMS.

Furthermore, the RDBMS systems provide a very high number of mech-
anisms which are absent or nearly so in NoSQL:

• Indexing: Database index is a data structure that improves the speed
of data retrieval operations at the cost of slower writes and the use of
more storage space. In details all row keys of a table are organized in
an read-efficient structure, such as a tree or hash map

• Views: View is a database object that contains definition of a complex
query created with a combinations of many tables. Sometimes views
can be materialized that means they also contain the results of these
queries.

• Transactions: Transaction comprises a unit of work performed within
a database management system and treated in a coherent and reliable
way independent of other transactions. All operation in a transaction
have to be completed or else all of them are to be canceled.

• Triggers: Database triggers are programmed tasks that is automati-
cally executed in response to certain events and that work on data

2.4 Classification of NoSQL

2.4.1 Key-Value Databases

The Key-Value approach is a simple and widely used paradigm to get data,
from key-value stores to caching systems, where data are represented in form
of a map between keys and values.

The main benefit of this model is that read and write access to values can
be easily optimized to gain top level performance (with BTrees or distributed
hash tables). Moreover, it is very simple to split data horizontally (sharding)
and store them on multiple machines when the number of records grow. (cf.
Section 2.3.2) Other categories can be treated as an evolution of this basic
model.

The API offered for data access and manipulations is extremely simple
and offers the following mechanisms: get/put/delete by key. The value is an
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Figure 2.3: Key-Value Data Model schematic

opaque blob 2, it means that data cannot be filtered by value.
In newer implementations, in addition to the basic find-by-key method,

there is also the possibility to find multiple values by a key-range. To achieve
this the partitioning cannot be random but it is necessary to split data main-
taining an order. To fetch values mapped by a key-range with random par-
titioning, the query need to be executed on all nodes. Otherwise with an
Order Preserving Partitioner 3 a key-range can be mapped on the correct
subset of nodes, reducing latency and traffic on the system.

The choice to provide only these simple functions is to keep high perfor-
mance and scalability profile.

This type of database is completely no-schema, only in some case key is
organized in namespace.

Amazon DynamoDB

Amazon offer on his Amazon Web Service (AWS) infrastructure different
storage possibilities: Amazon S3, Amazon SimpleDB and Amazon DynamoDB.

Like Amazon says, the difference between DynamoDB and S3 is: “Ama-
zon DynamoDB stores structured data, indexed by primary key, and allows
low latency read and write access to items ranging from 1 byte up to 64KB.
Amazon S3 stores unstructured blobs and suited for storing large objects up
to 5 TB . . . large objects or infrequently accessed data sets should be stored

2In the less purist implementations like Redis the value is not opaque, this subcategory
is also called Data Structures Server, because data structures are known by the system

3Order Preserving Partitioner is the name used in Cassandra, that is classifiable as
Column-oriented NoSQL Database, but the idea is valid for all solutions that apply the
data sharding
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in Amazon S3, while smaller data elements or file pointers . . . are best saved
in Amazon DynamoDB.” [8]

And also between DynamoDB and SimpleDB: “Both services are non-
relational databases that remove the work of database administration. Ama-
zon DynamoDB focuses on providing seamless scalability and fast, predictable
performance. It runs on solid state disks (SSDs) for low-latency response
times, and there are no limits on the request capacity or storage size for a
given table. This is because Amazon DynamoDB automatically partitions
data . . . In contrast, a table in Amazon SimpleDB has a strict storage lim-
itation of 10 GB and is limited in the request capacity it can achieve . . . it
may be a good fit for smaller workloads that require query flexibility. Amazon
SimpleDB automatically indexes all item attributes and thus supports query
flexibility at the cost of performance and scale.” [8]

Amazon DynamoDB is the Amazon Enterprise Big Data Storage Solution.
It is developed on idea presented in the paper “Dynamo: amazon’s highly
available key-value store” [28], that became also an inspiration for several
other products. Main objectives are high availability for write operations
4, allows of concurrent modifications of data, handle of big data with auto-
sharding and automatic conflict resolution to remove the work of database
administration. Only query on key and key-range, that are optimized with
indexing, are allowed.

Most important techniques used in DynamoDB is summarized in table
2.4. A description of these techniques can be found in [28].

Amazon DynamoDB summary

• Data Model: Key-Value with a hash key column and optionally a
range key column for sorting data.

• CAP: AP (cf. Section 2.3.2). BASE (cf. Section 2.3.2), eventual con-
sistency grade is configurable with quorum mechanism 5 from eventual
to strict, multi replica of data on more machines, possibility of live add
node to increase system performance, always write on partitions with
consistent hashing (hash-ring).

4High availability for write operations: this is related to the partition failure aspect
of CAP. Write to many nodes at once is allowed, so users should always be able to write
somewhere. And they will never see a write failure.

5Quorum mechanism: wait a configured number of server updates before return a
positive result of update operation to client
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Problem Technique Advantages
Data Partitioning Consistent Hashing Incremental Scalability
High Availability for
writes

Vector clocks with
reconciliation during
reads

Version size is decou-
pled from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted hand-off

Provides high avail-
ability and durability
guarantee when some
of the replicas are not
available.

Recovering from per-
manent failures

Anti-entropy using
Merkle trees

Synchronizes divergent
replicas in the back-
ground.

Membership and fail-
ure detection

Gossip-based member-
ship protocol and fail-
ure detection.

Preserves symmetry
and avoids having a
centralized registry for
storing members

Table 2.4: Amazon’s Dynamo - Summary of Techniques (from [28])

• Auto-partitioning: Data are automatically sharded on commodity
machines with key hashing and are auto re-sharded on live add node.
Conflicts are resolved automatically with a “last wins” policy

• MapReduce: it is possible to use Hadoop MapReduce with Amazon
Elastic MapReduce that has a DynamoDB out-of-the-box integration
[7]

• RDBMS: No transaction or secondary index support, only hash key
and range key are indexed

• Architectural: DynamoDB is completely peer to peer architecture
without a single point of failure, technically is a Fully Distributed and
Shared Nothing Architecture. All nodes accept queries and a smart
client can call the right node directly, but “stupid” client can call a
load balancer to map his query.

• Other: strict internal service level agreements (SLAs) regarding “per-
formance, reliability and efficiency” have to be met in the 99.9th per-
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centile of the distribution 6, use of vector clocks

Project Voldemort

Project Voldemort is a key-value store initially developed for and still used
at LinkedIn. [34] [35]

Like DynamoDB it is designed to provide high availability for write opera-
tions, concurrent modifications of data, auto-sharding and automatic conflict
resolution. Only optimized queries are allowed and vector clocks is used to
find conflict. But if a conflict is not resolvable by datastore, it is delegated
to client application and the strongly consistent but inefficient two-phase
commit (2PC) is used for reconciliation.

Project Voldemort summary

• Data Model: Key-Value, keys are organized in namespaces and both
keys and values can be complex, compound objects, as well consisting
of lists and maps

• CAP: AP. BASE, multi replica, always writeable, consistent hashing

• Auto-partitioning: auto-sharding without aouto rebalancing. Auto-
matic (last wins) or custom client logic for conflict resolution

• MapReduce: no MapReduce or server code execution

• RDBMS: Secondary indexes depends on persistence chosen, no trans-
actions, triggers or views

• Architectural: Peer to peer architecture without single point of failure

• Other: Persistence layer is pluggable with BerkleyDB, MySQL or even
a custom implementation, use of vector clocks

In-Memory stores: Memcached, Redis, Scalaris

In parallel to persistent key-value database there are some in-memory store
solutions. Main actors are Memcached and Redis that provide in-memory
high-performance, distributed memory object caching system. Scalaris is

6To meet requirements in the average or median case plus some variance is good enough
to satisfy more than the just majority of users according to experience made at Amazon.
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different, it is slower then others but has a complete distributed transactional
support.

For the first subclass, the entire dataset is loaded on main memory and all
operations is performed in RAM. This is the pro and con of these solutions,
they are extremely fast, for example Redis support 100.000 access per second
on single machine, but the dataset size is limited by memory (if the are
too much data, they can’t be loaded or else they are substituted with LRU
policy), at least to maintain the maximum performance without use of virtual
memory 7. A durability persistence layer on disk is optionally present but
these products are more read-only oriented.

Memcached [29] is the precursor of genre, it is solid and widely used. It is
great in a read-only scenario with all data persisted on a physical database.
It acts like a big distributed cache. Many other NoSQL databases use a data
caching mechanism to decrease latency on cached requests and have also a
”Memcached compatible” feature, which means they offer a fully compat-
ible Memcached API. For example Couchbase, that offers a specific build
of Apache CouchDB 2.4.2, recommends to substitute all Memcached nodes
(one per machine) with a Couchbase Server Cluster to add new features and
resolve some problems like cold cache on node failure and lack of scalability
[22].

Redis [41] is newer than Memcached and it is more featured: it provides
powerful data types and powerful commands to leverage them like Hashes,
Sorted Sets, Lists, and more. It’s not a pure key-value store because the
values are not opaque and can be manipulated. Out-of-the box persistence
solution. Transactions with optimistic locking. It is comparable to an in-
memory database not only a cache. Redis seems to be also a little faster
than Memcached and performs well even with write operations. Redis is
single thread process, so an instance for each core is to be used on multi core
machine, like if they were different machines.

Scalaris [42] is a scalable, transactional, distributed key-value store. It
uses a structured overlay with a non-blocking Paxos commit protocol for
transaction processing with strong consistency over replicas. It does repli-
cation synchronously so data are guaranteed to be consistent. Scalaris also

7Virtual memory: it is a virtualization technique widely used for extending the size of
main memory visible to client application, part of data are stored on disk and loaded in
memory when is needed
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supports transactions with ACID properties on multiple objects. Data are
stored in memory, but replication and recovery from node failures provides
durability of the updates.

In-Memory stores summary

• Data Model: Volatile Key-Value with optional durability layer.

• CAP: CP (with persistence in a cluster solution). In memory context,
consistency is not a problem, but in distributed scenario strict consis-
tency is not provided in Memcached and Redis. Also availability and
partition tolerance are a nonsense because any instance is has all of
data or a part of those but they are loaded from a persistent store,
therefore these properties depend on persistence layer. Scalaris offers
full ACID properties

• auto-partitioning: manual sharding on client side toward multiple
instance

• MapReduce: no support to MapReduce or server code execution, but
can be used on top of a MapReduce enabled architecture, like Hadoop,
in a complementary manner.

• RDBMS: Redis offer view and transactions on local instance, Scalaris
offer distributed transactions

• Architectural: Multi instance with read-only access is the standard
distributed scenario

• Other: The operations on data can be complex because the data are
in memory

2.4.2 Document-Based Databases

Document-based are considered by many as the next logical step from simple
Key-Value stores.

The “Key” doesn’t change so much, in most case is REST friendly be-
cause the primary interface on most Document-based database is REST over
HTTP.

Is the “Value” part that is really enhanced from base model: it is no longer
opaque to the system. A Document is a more complex and meaningful data
structure, with more attributes like an XML document, each of these can be
filtered, but to enable this, the database system must adopt some techniques
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Figure 2.4: Document-Based Data Model schematic

dear to the RDBMS, secondary indexing on top, which lower the overall
performance. Documents are organized in one or more collections.

This type of databases are schema-free, because documents in the same
collection can be heterogeneous, with different inner structure. Documents
can be nested in some implementations.

Usually documents are represented in JSON or XML forms or in a variant
of them, like BSON for MongoDB. An example of document (in JSON):

{

id: 1,

title: ’My first blog post’,

body: ’This is my first blog post !!!’,

date: ’2012-02-11 22.14.05’,

comments: [

{by: ’lety’, body: ’Good’, date: ’2012-02-11 22.15.04’},

{by: ’song’, body: ’Yeah’, date: ’2012-02-11 22.15.54’},

{

by: ’jess’,

body: ’Congratulations, we love your new blog’,

date: ’2012-02-11 22.24.43’

}

],

tags: [

{id: 1, name: ’first’},

{id: 2, name: ’info’}

]

}
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The tendency is to bring the NoSQL world near to the complexity of the
RDBMS, without too losing in scalability and performance. Query model
and API are always very rich and a set of high level features is provided
out-of-the-box, like indexes, views, triggers, transactions, but each imple-
mentation provides a different subset of these.

Reference model: CouchDB (2.4.2) and MongoDB (2.4.2 are the most
representative implementations.

CouchDB

Document-based NoSQL databases, of which CouchDB is part, aim to bridge
the features gap with the RDBMS while maintaining a schema-free and scal-
ability.

CouchDB is based on a powerful mechanism of view materialization, that
use a MapReduce script written in Javascript language for view creation.
They can be created dynamically at runtime and they are updated (mate-
rialized) on first reading and marked to be updated when concerned data
are changed, so the writes are not slowed down and the reads are always
consistent (but first reads are slowed down).

CouchDB is used for the Ubuntu One synchronization service, that is
focused on syncing of two systems that has been disconnected for a period
of time. They call this master-master replica because there is not a clear
hierarchy, updates can be done on both systems. The concurrency control is
a MVCC 8 with automatic conflict resolver (when it is possible, otherwise a
manual reconciliation is needed).

CouchDB is also a web server. It can host HTML5 Applications called
CouchApps, that is treated like simple data, so they are replicated and dis-
tributed over CouchDB synchronized installations. This is useful to create
a load balancer for a high-throughput website, that goes well with a with a
big data store.

Two companies carry out projects based on CouchDB: Cloudant develop
BigCouch [19], which adds automatic scale-up strategy 9 inspired by Ama-
zon DynamoDB paper [28]. The second is Couchbase [21] that adds either
scale-up and scale-down on mobile strategies. Couchbase adds also a built-in
data cache, a Memcached compatible API (Chouchbase previously was Mem-

8MVCC: Multiversion concurrency control, is a concurrency control method to provide
concurrent access to the database using more version of any value

9Scale-up: automatically distributions of data across commodity servers or virtual
machines.
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base, a persistent implementation of Memcached protocols) [22], geo spatial
indexing and others to CouchDB.

CouchDB summary

• Data Model: Document-based (without hierarchy of documents)

• CAP: AP. MVCC 10 (no garbage collection), strict consistency on
master, eventual on slave, master-master replica and sync with offline
database

• auto-partitioning: not out-of-the-box, but third party libraries exist,
Lounge and BigCouch

• MapReduce: MapReduce is used for view materialization but is not
exposed like a pure server side execution service

• RDBMS: lock free transactions are provided with the use of append
only log and serialization of writes. Btree indexes on keys. For sec-
ondary indexes, the creation of views is needed.

• Architectural: CouchDB is optimized for read-heavy scenario, where
consistence is needed on read

• Other: Only keys and key ranges can be queried but with the views,
complex queries can be prepared, too

MongoDB and RavenDB

MongoDB [4] and RavenDB [40] are another face of Document-based NoSQL
databases with respect of CouchDB.

One big difference is that CouchDB is MVCC based, instead MongoDB
(and RavenDB) is more of a traditional update-in-place store. MVCC is very
good for certain classes of problems: problems which need intense versioning;
problems with offline databases that resync later; problems with a large
amount of master-master replication. Along with MVCC comes some work
too: first, the database must be compacted periodically, if there are many
updates. Second, when unrecoverable conflicts occur, they must be handled
by the client manually.

10MVCC: Multiversion concurrency control, is a concurrency control method commonly
used to provide concurrent access to the database to implement transactional memory
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MongoDB (and RavenDB) updates an object in-place, when possible,
without fetch the entire document and without using multiversioning. An
high update rates requirement is common in several scenarios and this mech-
anism helps to increase the overall performance.

Mongo’s replication works great but, without the MVCC model, it is
more oriented towards master-slave and auto failover configurations than to
complex master-master setups.

Another difference: CouchDB only optimized queries (on keys and key
ranges) are allowed, to support complex query, view materialization is needed.
Here there is more hype on flexibility of query model to allow ad-hoc queries
and sorts.

Like in RDBMS there is a query planner that, regarding history, creates
and uses automatic indexes on documents and document attributes in a
collection, so also ad-hoc queries and sorts can be fast after the first running.

Obviously the creation and maintenance of these indexes adds a certain
amount of overhead for insert update and delete operations. Thus, indexes
are best for collections where the number of reads is much greater than the
number of writes. An index can be updated synchronously with the corre-
sponding write operation to ensure the read consistency, but the write op-
eration is so slowed down. Otherwise, when eventual consistency is allowed,
the index can be updated in background. In that case, for a time interval,
reading the data could return the old value, but when this interval will be
elapsed the consistency will be ensured.

MongoDB demand to the client the choose of how much update oper-
ations (on replica set 11) wait before confirmation, but this has nothing to
do with the index update. Automatic indexing is always synchronously. A
manual index can be declared as background index, but this will be updated
asynchronously only on the primary set and not on the replica set.

RavenDB performs data indexing in a background thread, which is exe-
cuted whenever new data comes in or existing data are updated. Running
this as a background thread allows the server to respond quickly even when
large amounts of data have changed, however in that case a stale indexes is
used to execute a query. An index is marked with stale state when it needs
to be updated and returns at normal state when is really updated. RavenDB
idea is that “stale is better than offline”. When a query is based on a stale
index is also marked as stale, but can be also configured to wait the updated

11Primary and replica sets: primary set is the owner and responsible of a data set.
Replica sets are a form of asynchronous master/slave replication, adding automatic failover
and automatic recovery of member nodes.
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data by client application.
The conclusion is that MongoDB is better for read-heavy applications,

RavenDB for write-heavy applications, regards performance.
Both support auto-scaling out-of-the-box and also auto-replica but with

different approaches. MongoDB offer two alternative way, simple master-
slave replica and the newer replica sets [6]. RavenDB chooses peer-to-peer
approach, so all machines accepts client calls.

MongoDB offers MapReduce API to execute distributed jobs, RavenDB
use it only internally to create index and map queries on machines.

RavenDB also offer triggers, transactions and full-text search. And it can
be extended with custom Microsoft .NET DLLs called “Bundles”, simply by
dropping them in a directory, for example there is an example of cascade
delete bundle directly on the website of project. In MongoDB, transactions
can be emulated with atomic operations and conditional update and sug-
gested patterns like in [3] and [5]

API is similar, with object mapping and operations deferring concept. A
query can be built in more step and only at the end the query is executed
on server side. For example, specify at the end of the query how much items
need to be skipped and taken.

MongoDB and RavenDB summary

• Data Model: Hierarchical Document-based

• CAP: MongoDB is CP and RavenDB is AP. BASE, eventual con-
sistency in MongoDB and stale indexes in RavenDB, replica master-
master or master-slave, optimistic locking and concurrency

• auto-partitioning: automatic sharding on more machine. RavenDB
can use a custom sharding strategy

• MapReduce: MongoDB offers MapReduce as client side feature, RavenDB
uses it for views and indexes, but not exposes the feature to the client

• RDBMS: Rich set of RDBMS features like secondary fixed and dy-
namic indexes, trigger and more. MongoDB doesn’t provide transac-
tions, but only a pattern to simulate two phase commit them with
atomic operations and conditional updates. RavenDB offer local and
distributed transactions

• Architectural: MongoDB is optimized for write-heavy scenario, RavenDB
for read-heavy scenario
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• Other: API similar to some of the ORM 12 APIs, for example like
LINQ to Entities, with object mapping and operations deferring, after
the creation of predicates tree. RavenDB supports Full-Text Search of
Lucene.NET and it is extendible with creation of bundles

2.4.3 Column-Oriented Databases

Figure 2.5: Column-Oriented Data Model schematic

Column-Oriented is not only a NoSQL database category, it is a way to
treat data: the approach to store and process data by column instead of
row has its origin in analytic and business intelligence where column-stores
operating in a shared-nothing massively parallel processing architecture can
be used to build high-performance applications. Notable products in this
field are Sybase IQ and Vertica (cf. [38]). However the Column-Oriented
NoSQL class is less purist and more flexible, it integrates both column and
row orientation, and can be described like a “sparse, distributed, persistent
multidimensional sorted maps” (cf. [32]).

These characteristics put the Column-Oriented category like the best
suited to scale up and treat big data volume, because the partitioning of
data can be applied vertically on columns as well as horizontally on rows.

Also performance on range queries is the best: sequential reads (scan on
a column) are fast because data in a column is stored together and columns

12ORM: Object-Relational Mapping
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compress better than rows because the data are (in most of case) similar.
Key-Value approach to fetch data is adequate for the some scenarios, but

sometimes a more structured way to organize key is needed. The Column-
Oriented data model variations are all inspired on the Google BigTable paper
[17], that identify a value with a complex key, a triple: row/column/times-
tamp. In practice is a Key-Value with a multilevel key.

• Column-Family: contains columns of related data. It is a tuple (pair)
that consists of a key-value pair, where the key is row-key and is mapped
to a value that is a set of columns. In a RDBMS could be compared
to a table but each row (value related to row-key) could have different
columns. Column-families need to be created at design time and it is
very important that they are properly designed, because they have a
direct impact on vertically partitioning. Columns in the same column
families are compacted together and are stored one near the others.

• Column: each column is a tuple (pair) consisting of a column name
and a set of values, identified by a timestamp for multiversioning sys-
tem. Columns can be added or removed dynamically.

• [Supercolumn]: in Cassandra (not in BigTable) column-families can
contain columns or supercolumns (not at the same time). Supercolumn
have a name and is a map of columns. Supercolumns can be added or
removed dynamically, too.

• Row: is row-key and every value related to it (in multiple column-
families).

The store is sparse, so if a column or a column-family is empty there is
no need of space on disk.

Query model and API is usually simple like in Key-Value model: get/put/s-
can13/delete.

Get or filter can only be done on keys (row-name / column-name / times-
tamp). The “Value” is opaque like in the Key-Value model, but the schema
is semi-structured in columns, then the read operations can use projection
with granularity of the single column. A value can be identified bye this
path: keystore - column-family - column - timestamp.

Data are automatically stored and sorted by row-name and column-name.
This intend that the choice of keys is extremely important to get data quickly

13scan: the scan operation is an iteration on more rows/columns, with a start and stop
key
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and ready to use (see example below).

Reference model: Google BigTable (2.4.3), Cassandra (2.4.3).

Column-oriented schema design example Take a look on a Twitter
like example, with tweets related to users. Users and tweets data are stored
respectively in Users (Figure 2.4.3) and Tweets (Figure 2.4.3) Column Fam-
ilies.

Figure 2.6: Users column family

Figure 2.7: Tweets column family

The typical scenario is the request of last tweets in general or by a specific
user. An smart choice for the tweet key can be a sequential value, so tweets
will be stored and sorted in chronological order and a get by key range, that
is optimized, return the correct results. With a random generated key the
tweets will be stored in not useful order.

Note that the columns contained in the two rows of Tweets are different,
an example of heterogeneous data.

In these schema an information is missing: the relation between tweet and
owner (user), no foreign-key on Tweets column-families. This can be saved
for example in a new Column-family, UserTweets (Figure 2.4.3), mapped by
the user name (row-key) and that contain a supercolumn Timeline with the
keys of user tweets (column values).

With this schema to get the lasts ‘20’ tweets by user ‘oscar’ will be nec-
essary to execute two query (a LINQ style notation is used for simplicity):
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var tweetIds = cfdb.UserTweets.Get("oscar")

.Fetch("Timeline")

.Take(20)

.OrderByDescending()

.Select(x => x.Value);

var tweets = cfdb.Tweets.Get(tweetIds);

To get the lasts ‘20’ tweets in general, only need one query on Tweets:

var tweets = cfdb.Tweets.Take(20).Select(x => x.Value);

Figure 2.8: UserTweets column family, to store the relations

Horizontal and Vertical Partitioning The Column-oriented data model
is the best suited for data partitioning. It supports both horizontal and
vertical partitioning (cf. Section 2.3.2) because it is stored by columns instead
of rows. A column is independent from each others ans it is organized by
row keys. It can be placed on a different node and can be also splitted
horizontally on the row key. In the Figure 2.9 there is a graphical example.

Google BigTable

In 2006 Google released a whitepaper [17] which was quite influential to the
NoSQL ecosystem and it assumed the role of biggest player in the NoSQL Big-
Data context. BigTable is described as “distributed storage system for man-
aging structured data that is designed to scale to a very large size: petabytes
of data across thousands of commodity servers”. Google currently uses it
in several proprietary services, like Gmail, Google Search, Google Reader,
Google Docs and more. It is available for developers only on Google App
Engine PaaS 14.

14PaaS: Platform as a Service
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Figure 2.9: Column Based Horizontal and Vertical Partitioning

“A Bigtable is a sparse, distributed, persistent multidimensional sorted
map.” It is the Column-oriented store in the NoSQL manner, that scale on
both rows and columns (cf. 2.4.3). It is built on top of Google File System
(GFS) and stored in an immutable datastructure called SSTable. Access to
shared resources in regulated by Chubby, a distributed lock system (that use
Paxos-style consensus protocols [36, 43]). Values are multiversioned. The
application can define how many entries of data, marked with a timestamp,
should be keep [17].

Different from DynamoDB, BigTable ensures consistency and partition
tolerance (CP in CAP Theorem, cf. 2.3.2) instead of grants the high-availability
in partitioned network scenario. It has a master node that monitors and co-
ordinates the activities of all region servers, so the architecture is not fully
peer to peer. The system could go offline until a new master node is elected
or network problems are resolved.

BigTables are auto replicated in five copies with one master. Nodes can
be added live to increase performance ensuring automatic sharding on rows
and scaling vertically. MapReduce is available to read from and write to a
BigTable.

Special feature of BigTable, compared to other products, is data com-
pression, that makes it possible to occupy less disk space and also improve
performance because it work directly on data without the need to uncompress
first.
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Google BigTable summary

• Data Model: Column-oriented

• CAP: CP. BASE with multiversioned value and garbage collection,
ensure Consistency and Partition tolerance but not grants ”Always
Availability”, five active replica with one master, live add node.

• auto-partitioning: auto sharding (horizontal) and vertical partition-
ing with auto re-balancing

• MapReduce: is available to read from and write to a BigTable

• RDBMS: No secondary indexes, no transaction only atomic operations
on single row

• Architectural: No P2P, there is a master node

• Other:

BigTable derivatives: HBase and Hypertable

Google BigTable can be used only on Google infratructure. HBase and
Hypertable are two different projects with the same objectives: implement
BigTable outside of Google.

To do this the solution adopted by them is to use Hadoop as underlying
layer, that is comparable with the Google infrastructure. A short brief is
shown in Section 2.3.2 and in Table 2.5 we present the comparison of Hadoop
and Google stacks.

Google Hadoop
Distributed Filesystem GFS HDFS
Distributed Locking System Chubby Zookeeper
Algorithm Distribution Framework MapReduce Apache MapReduce

Table 2.5: Google and Hadoop stacks comparison

BigTable derivatives summary

• Data Model: Column-oriented (like BigTable)
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• CAP: CP. BASE with multiversioned value and garbage collection,
ensure Consistency and Partition tolerance but not grants “Always
Availability”

• auto-partitioning: auto sharding (horizontal) and vertical partition-
ing with auto re-balancing

• MapReduce: With Apache Hadoop MapReduce

• RDBMS: No transactions, no secondary indexes, Hypertable as no
triggers, HBase has coprocessor that is comparable to triggers

• Architectural: Very close to BigTable

• Other: Can be deployed everywhere there is an Hadoop installation

Cassandra

Cassandra [11] is firstly developed by Facebook and after become open source
as an Apache project. At this time, it is in use at Facebook, Twitter, Netflix,
Urban Airship, Constant Contact, Reddit, Cisco, OpenX, Digg, CloudKick,
Ooyala, and more companies.

Based on a mix and match of Google and Amazon technologies, trying to
obtain best solution for BigData storage. It is fully peer to peer and ensures
high-availability, eventual consistency, elasticity (incremental scalability) and
optimistic replication like DynamoDB. It adopts BigTable column-oriented
data model introducing the supercolumn concept (cf. section 2.4.3).

An important feature of Cassandra is the possibility of configuring, case
by case, the grade of consistency between “One”, “Any” and “All”. That is
the number of consistent values that the system should wait before returning
results. With “All” grade, strict consistency can be obtained.

DataStax distributes and supports a version of Apache Cassandra. There
are two versions of DataStax distribution, a free Community Edition and an
Enterprise Edition. The Enterprise Edition integrates Cassandra with other
Apache projects such as Hadoop (to enable the use of MapReduce). Both
versions include the OpsCenter, a visual management and monitoring tool for
Cassandra that enables developers to manage and monitor their Cassandra
clusters [24].

Cassandra summary

• Data Model: Column-oriented (Like BigTable) with supercolumns
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• CAP: AP (but consistent values can be obtained configuring the re-
quest). BASE (Like DynamoDB)

• auto-partitioning: auto sharding (horizontal) and vertical partition-
ing with auto re-balancing

• MapReduce: MapReduce can be enabled by using Cassandra on
Hadoop

• RDBMS: Secondary indexes

• Architectural: Like DynamoDB it is a full peer to peer architecture.

• Other: Writes are faster than reads

2.4.4 Graph-based Database

Figure 2.10: Graph-based Data Model schematic

It is important to cite Graph-based category but it will not be treated in
this document because of the different evolutionary path taken with respect
the others. Key-Value, Document-Based and Column-Oriented categories
aim at the entities decoupling to facilitate the data partitioning and have
less overhead on read and write operations, whereas Graph-based take the
modeling the relations like principal objective. Therefore techniques to en-
hancing schema with a Graph-based database may not be the same as used
with Key-Value and others.

The graph data model is best able to model domain problems that can
be represented by graph as social relationship, maps etc. Particular query
languages allow querying the data bases by using classical graph operators
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as neighbor, path, distance etc. Unlike the NoSQL systems we presented,
these systems generally provide ACID transactions. Among the others we
mention Neo4j [31], an open-source implementation of Graph-based NoSQL
database. Nodes store data and edges represent relationships. The data
model is called “property graph” to indicate that edges could have properties.
Neo4j provides a REST interface or a Java API.

2.5 The Lack of Relation Concept

After exposing the benefit deriving from the usage of NoSQLs as an alterna-
tive to RDBMS and after giving a complete classification of existing products,
we have to show also the main negative aspect.

The principal issue is the lack of the relation concept. This is also the
principal reason that enables most of benefits described in previous section,
but sometimes relations are necessary.

After we have described this in details we will expose all others lacks.

The main concept of NoSQL (with exception of Graph-oriented, cf. Sec-
tion 2.4.4) is the independence of each database entities from everyone else.
Entity data are serialized in collections and there are no links from an object
to another. So, partitioning data and getting a scalable database should be
extremely easy (cf. Section 2.3.2).

However, many real cases need to relate multiple objects together. In
RDBMSs the relation concept is a centerpiece and it is achieved always in
a standard way depending on the type of referential constraint, (1,1), (1,N)
and (N,M). These constraints are directly enforced by database systems and
cannot be violated.

The problem is that in NoSQL databases the relation concept does not
exists at all. To enable relations in it is always necessary to find a way to
serialize this information and to use it, because there is no general way to
achieve it.

In the common way the solution is to fetch tuples from the first entity set
E1, extract and distinct the join attributes (named keys) and fetch objects of
secondary entity set E2 that satisfy the join predicate keys.contains(E2.E1id)
and then combine E1 and E2 to obtain final results. The execution of query
is shown in Figures 2.11 and 2.12 respectively in SQL and NoSQL way.

What we are trying to do is to find a general way to handle any type
of relations in NoSQL databases maintaining high scalability profile. In the
next chapter we will describe our solution.
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Figure 2.11: Execution of a query on a relation in SQL way

Figure 2.12: Execution of a query on a relation in NoSQL way
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2.6 Summary

In this chapter we have proposed a NoSQL classification with respect the
data models. For each class we have described the characteristics of main
existing products. We have also presented the motivations to use or not
NoSQL databases instead of classical RDBMS. finally we have introduced
the problem of handle relation in NoSQL databases that is the starting point
of the next chapter.
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Chapter 3

Controlling Serialization of
Data in NoSQL Databases

3.1 Definition of the Problem

NoSQL are mainly used to meet the requirements of high performance, when
RDBMSs show their limits. As we have seen in Section 2.3.2 the main prob-
lem is the difficulty to scale efficiently when the amount of stored data grows.
NoSQLs instead are designed to scale well.

Nevertheless, as highlighted in the previous chapter, the NoSQL world has
no standard concept of relationship between different database entities (cf.
Section 2.5) and, even more important, it has no compositional operators,
like the join. All the application objects are just serialized in independent
collections and all relationships between objects are to be managed by the
application layer. Moreover, only one collection can be fetched at a time.

The problem is to automatically handle relations and other features that
must be manually implemented using a NoSQL database in a distributed
scenario.

In this chapter first we will present the commonly adopted solutions to
handle relations using a NoSQL database. These techniques are not general
and they must be implemented at the application layer.

Then we present our approach that aims at providing a general represen-
tation of the relations for NoSQL databases that is context independent and
is especially scalable. Given this general representation, in the next chapter
we will define two alternative logical models to achieve it.
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3.2 Common NoSQL Relationship Serializa-

tion Techniques

The relationship between different objects in a NoSQL database are com-
monly built with a variant of two techniques: Embedded Objects and Client-
Side Joins.

Embedded Objects

One of the most “NoSQL like” relationship implementation pattern is “Em-
bedded Objects”. It consists in copying all the objects related to an entity
directly in the entity body. For example if we have two entity sets users and
profiles that are related one to one:

users: [{ profiles: [{

id: 1, name: ’Oscar’,

login: ’oscar’, surname: ’Locatelli’,

date: ’...’ user_id: 1

}, ... ] }, ... ]

Performing Embedded Object we obtain a unique collecion users that con-
tains user objects with associated profile nested in the object body:

users: [{

id: 1,

login: ’oscar’,

date: ’...’,

profile: { // this is the (1,1) relation

name: ’Oscar’,

surname: ’Locatelli’

}

}, ... ]

If the relation is (1,N) it is more commonly known as “Nested Collection”. An
example of (1,N) relation is the one below, that describes a blog containing
several comments:

posts: [{

id: 1,

title: ’My first blog post’,

body: ’...’,

comments: [ // this is the (1,N) relation

{by: ’lety’, body: ’...’, date: ’...’},
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{by: ’song’, body: ’...’, date: ’...’},

{by: ’jess’, body: ’...’, date: ’...’},

{by: ’paul’, body: ’...’, date: ’...’}

],

tags: [ // this is the (N,M) relation

{id: 1, name: ’first’},

{id: 2, name: ’info’} // this is replicated

]

}, ... ]

Embedding objects is preferable in the case of (1,1) or (1,N) relations because
there is no replication of the secondary entities. In case of (N,M) relations
the total number of entity replicas is to maintain low, because if a secondary
object is updated, all its replicas need to be updated.

posts: [{

id: 1,

title: ’My first blog post’,

body: ’...’,

comments: [ ... ],

tags: [ // this is the (N,M) relation

{id: 1, name: ’first’},

{id: 2, name: ’info’} // this is replicated

]

},

{

id: 2,

title: ’My second blog post’,

body: ’...’,

comments: [ ... ],

tags: [ // this is the (N,M) relation

{id: 3, name: ’second’},

{id: 2, name: ’info’} // this is replicated

]

}, ... ]

Moreover this technique is good when the read of the entire relation takes
place usually starting by the primary entity. For example fetching tags re-
lated to firstly filtered posts is very efficient 1.

1For the example we use a MongoDB-like sintax for db operations and a LINQ-like one
for application logic
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db.posts.fetch(’tags’).find({ ’id’, ’eq’, 2 })

Doing the opposite on the same collection is not so good. For example take
a tag and then take the related posts needs a complex pattern matching,
that the most of NoSQL database not embed. Commonly load all posts from
database and then filter them in application is needed.

all = db.posts.fetch(’tags’).findAll()

results = all.filter(p => p.tags.any(t => t.id = 2))

Document-oriented database usually provide the querying on nested sub-
objects. It is not so good if there is replication (the objects to scan is more
than the real number), but it is possible and if that is not the principal
query pattern on the relation it could be a valid way. Here an example with
complex pattern matching directly on db.

all = db.posts.fetch(’tags’).find({ ’tags’, ’match’, ’id = 2’})

This query can be executed efficiently using another collection to store the
tags that embed the inverse relation (relation of one tag with its posts) that
can contain also not the entire post entities but for example only a list of the
ids.

tags: [{

id: 2,

name: ’info’,

posts: [ 1, 2 ] // ids of related posts

}, ... ]

keys = db.tags.find({ ’attr’, ’eq’, 2 })

results = db.posts.findByKeys(keys);

However these two collections require to be synchronized, so an overhead on
the update operations is shown. This is the common read/write performance
tradeoff introduced by denormalization.

The primary objects could become very big if they have an high number
of secondary ones related. This can create many problems. First, a maximum
size for the single object storable in db may exist. Also, if the database does
not allow partial reading of the object, the performance can drop dramatically
in both reading and writing. And finally, the scalability problem: for a huge
amount of secondary objects, the object could need to be splitted and stored
in several nodes, but this could be not possible.

All these problems are present in most of simple Key-Value stores. Document-
oriented, usually, and Column-based stores allow to project only necessary
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attibutes/columns and also to update only what is needed. Column-based
stores also cancel the scalability issue because a row (object) can have very
high number of columns (attributes) and it can be partitioned also vertically
on different nodes if is needed.

Commonly this technique is used with small cardinality relations, in order
of tens, to work on all databases.

Client-side Joins

In most cases the management of relationships between objects are deferred
to the client application layer. Like in RDBMS the key of primary objects
is stored as dependent-object attribute, or for (N,M) relations an external
collection with the pairs of keys is used. Once the first object has been loaded
(or the external pair of keys), it must be parsed to extract sub-objects keys
and then the secondary objects can be read.

This mechanism is general purpose and does not hide any issue, but all
the logic must be implemented, every time, on the client application. Two-
passes (or three-passes) queries for fetching relation is not the only thing that
needs to be implemented. In the insert operations the client must check that
the (1,1) or (1,N) structural relation constraints is not violated and when an
object is deleted also all the connected (N, M) relationship pairs need to be
removed.

In conclusion we can say that this technique is the simplest one but needs
a lot of custom work in every implementation.

In order to help developers to simply handle relations, some high level
techniques are embedded into database APIs. For example MongoDB has a
convention for representing a reference to a document, named DbRefs. It is
simply a sub-document embedded in the primary with the collection, the key
and, optionally, the database of the secondary object to connect. This is used
to implement an high level operator in drivers used to fetch automatically
the sub-object. But there is no difference with respect to saving the object
id and fetch it manually as explained in official documentation [2].

{

_id: ObjectId("5126bbf64aed4daf9e2ab771"),

// ... other attributes

creator:

{ // this is the DbRef

$ref: "creators",

$id: ObjectId("5126bc054aed4daf9e2ab772"),

$db: "users"
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}

}

3.3 Marijà: A Framework for Data Distribu-

tion

Figure 3.1: Marijà Architecture

As mentioned in the Section 3.1 much of logic necessary for data manipu-
lation in NoSQL databases is left to the programmer, who needs to implement
all in application software. An RDBMS for example is responsible to main-
tain the referential integrity of the data, manage concurrent access, perform
efficient and complex queries. Furthermore, in NoSQLs does not exist a com-
mon manipulation language, as SQL is in RDBMS. The reason is that the
underlying logical models are different for all the products. In Chapter 2
we presented a classification of NoSQL data-models that should clarify the
point.

The Marijà framework aims at addressing these issues in a distributed
scenario. It is composed of two main layers, one supporting the design time
activities and the other the runtime operation of NoSQL databases (see Fig-
ure 3.1). The design time layer supports developers in creating the logical
schema of the database starting from a data model, typically provided in
terms of an entity-relationship diagram, and from the definition of the most
used queries for the system under development.
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Based on these two types of input, Marijá determines the tables that are
most suited to optimize the execution of the queries and these tables will be
distributed on several nodes. It might happen that different queries require
different, partially overlapping, tables to be defined. In this case, all possible
tables are created and populated, and the runtime layer of Marijá is in charge
of: i) ensuring that data updates are consistently propagated to all interested
tables and ii) managing the execution of queries on the most suitable tables.

Marijà addresses the problem by using MapReduce algorithms to manage
data. As Marijà states, a deeply parallelization of tasks is possible under the
assumption of “single node independence”.

At high level, we can describe the “single node independence” concept
as the property that an operation applied to the entire system is equal to
the aggregation of the same operation applied to several nodes. Formally,
assumed an operation OP (X), it is equivalent to OP (X1)⊕OP (X2)⊕ ...⊕
OP (Xn), where Xi is a node of a system and X is the entire system.

Figure 3.2: Marijà Layers

In Figure 3.2 we show the logical layers of a Marijà system. At the top
level there is the Application layer, at the bottom layer there is a concrete
NoSQL database. In the middle of them we find Marijà that is divided in
“Query Distribution Logic” and “Single Node Management”. Marijà acts
as database common interface from the application side and as database
management system from NoSQL side. As highlighted in the figure, the
objective of this thesis is to support the “Single Node Management” layer.

Marijà Query System Overview

Here we report a brief on Marijà Query System.

49
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Figure 3.3: Marijà: Query Schema

Marijà design starts with the ER model of data. Marijà needs that all
the relations are in binary form. An equivalent representation of a general
ER schema that use only binary relations always exists.

Once that ER model is in “binary form” this could be directly traduced
in a non-directed graph with entities as nodes and relations as edges. Doing
a query on this graph is equal to take a portion of it, a sub-graph.

Figure 3.4: Marijà: Mapping a tree on a table

In details a Marijà query is described by a point of view, the entity from
which to start, and a path, the list of relations to be traversed to fetch the
other entities. To build the query sub-graph no edges can be visited more
than one time. An example of query path is:

A{R2}B{R3}C

where A,B and C are entities and R2,R3 are relations.
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Now to select the query sub-graph we start from the node that represents
the point of view, take the relations (edges) in the path and the nodes between
them. This sub-graph is named “Query Schema” and contains all the entities
and relations that must be queried.

The materialization of results will follow this schema but from this will
produce a tree starting by the point of view entity with all others entities
linked.

This flow is shown in Figure 3.3.

Figure 3.5: Marijà: Query Distribution

Query Execution Marijà works in a distributed scenario and it is deployed
on a network of nodes. These nodes are divided in sets and each node set is
responsible of the execution of one or more designed queries (see Figure 3.5).
All nodes in a node sets can answer to the same query set.

Node sets are chosen with an analysis of a set of pre-engineered queries.
Relations that will be present more frequently in same queries will be allo-
cated to the same node sets.

The query execution will be provided by a smart Map/Reduce mechanism
(cf. 2.3.2). The “map” function selects what node sets are needed to answer
query, if it is one of the top queries, it is sent directly on the associated node
set, else it will be decomposed in pieces and sent to all node sets needed. Then
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the “reduce” function collect and combine results and return an answer to
the client (see Figure 3.6).

Figure 3.6: Marijà: Map-Reduce Execution

Obviously in a BigData scenario, a Node Set could be responsible of large
amount of data, so data are partitioned on more nodes (see Figure 3.7).

Figure 3.7: Marijà: Collaboration of Nodes

The sharding is not based on random order, it is done on relation keys
ordered to balance the number of entities involved. A single node must hold
locally all entities that linked by local relations to avoid distributed join to
build local result.

52



CHAPTER 3. CONTROLLING SERIALIZATION OF DATA IN NOSQL
DATABASES

All these choices have been made to ensure the independence of the in-
dividual node in working on relations of which it is responsible (single node
independence assumption). Starting from this hypothesis, we need to choose
a suitable logical model to store relations on single node.

In the next section we will continue from here.

3.4 Summary

In this chapter we presented an overview of the Marijà Project. Marijà is
a framework to handle relationships in a distributed scenario, preserving
scalability. The project assumption of “single node independence” is the
starting point of the this thesis work.

In the next chapter we will propose two alternative strategies to imple-
ment the single-node model.
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Chapter 4

Single Node Logical Models:
MinR and MaxR

4.1 Single Node Logical Models: MinR and

MaxR

In this chapter we show the theoretical contributes of this thesis.
As assumed in previous chapter, a single Marijà node is independent

from each other. Focusing on single node, we propose two opposite strategy
to model relationships. The first, “Minimal Replication” (MinR from here),
which involves only the primary copy of the data of each entity and the
second, “Maximal Replication” (MaxR), which includes a replica of the entity
for each tuple of the relation to which it belongs. The two models will be
described after in this section and also, by analyzing common details between
the two models, a common schema of relation will be presented.

Then we will propose a method for comparing models. The method con-
sist of the mapping of CRUD (Create, Read, Update and Delete) operators
on MinR and MaxR models and analyze costs of algorithms.

From this comparison we will conclude what are the operators that need
more investigation. In the next chapter we will define and execute some tests
on concrete NoSQL implementation.

4.1.1 Minimal Replication (MinR)

As we shown in Figure 4.1 this representation is very similar to many-to-
many standard RDBMS relation. The differences are that the MinR is used
to model all kind of relationships.

The schema of a relation consist of:
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Figure 4.1: MinR: Implementation Example

• one table for each entity, with id and attributes.

• one table to store the relation tuples, each of them contains an identi-
fier, the keys of the related entities and the optional attributes of the
relation (Figure 4.1).

The write speed and consistency are the highlights of this model. The
consistency is certainly strict (not eventual) since the model has no replicas.

Updating an entity in MinR means saving changes to the tuple in the
entity table. In the Figure 4.2 we show an example of entity update. We
have to update data of the Student entity with id = 1. The only thing to do
is to update the tuple in the S entity table with id = 1.

Reading a relation instead consist of in more than one fetch operations:

1. loading the tuple in the relation table

2. loading related tuples from the respective entity tables, using entity
keys stored in relation tuple

In the Figure 4.3 we show an example of relation read. We have to fetch
the R3 relation with id =′ 1 1′. So, we have to read the tuple with id =′ 1′1
from R3 table, then we have to fetch the related entities: the tuple in S with
id = 1 and the tuple in C with id = 1.
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Figure 4.2: MinR: Entity Update

Figure 4.3: MinR: Read Entity
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Storing only one copy for each entity involves more work, such as we have
seen in reading operation example, but ensures that data are always updated
to the latest version.

4.1.2 Maximal Replication (MaxR)

In MaxR representation all data are denormalized, entity attributes are
copied inside the tuples of the relations. All of these copies are replicas
of the same entity and they must be kept in sync, but reading could be
faster because there is no need to do the join.

Figure 4.4: MaxR: Implementation Example

The first version of this model included only the tables of relations 4.4.
Later, we also introduced the entity tables, similar to those present in MinR
and called here autorelations 4.5.

This because if there is a need to read an entity alone and not as part
of a relationship, we can read directly from the autorelation with a simple
direct access by key (Read Entity).

The extra weight given by this new replica is irrelevant because it is just
an update in addition, when in MaxR there is already all other replicas to
update. In addition autorelation copies will always be the first to be updated
and therefore will always be consistent and write operation will wait only
updating the primary copy before releasing control to the application while
the additional copies will be updated in the background.

In relation reading nothing changes, there is no need to access to autore-
lations.

The schema of the model consist of:

• one table for each entity that contains the primary copies, with id and
attributes.

• one table to store the relation tuples, each of them contains an iden-
tifier, the keys of the related entities, the optional attributes of the
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Figure 4.5: MaxR: Entity Autorelations

relation and the entities denormalization (Figure 4.5).

It is clear that the process of updating an entity will be heavier than in the
Minimal Replication model, because there are many copies to be updated.
In particular, the primary copy and all replicas in tables of relations to which
it belongs must be upgraded.

As for the MinR model, in Figure 4.6 we report an example of entity
updating for the MaxR model. We have to update data of the Student
entity with id = 1. First, we have to update the tuple in the S autorelation
table with id = 1. Then for each relation to which this entity belong (in this
example we show only R3), we have to update S related data for all tuple
with Sid = 1 (Sid identify the column of relation table that store S entity
ids).

Reading a relation, in MaxR model, translates only in get the tuple in
the relation table that will contain the data of the associated entity. In this
case might happen temporarily to read stale data, since there are multiple
copies of each entity and may not be all updated to same version. It’s up to
an eventual consistency checker solve the problem if necessary.

The same example we have shown for MinR model is presented in Figure
4.7) for the MaxR model. We have to fetch the R3 relation with id =′ 1 1′.
So, the only operation to perform in MaxR is the fetch of the tuple with
id =′ 1′1 from R3 table.
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Figure 4.6: MaxR: Entity Update

Figure 4.7: MaxR: Read Relation
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4.1.3 Common Schema between Models

The two models, while using opposite strategies regarding the replication,
have a similar structure for the relations that we can abstract in the “Relation
Common Schema” shown in Figure 4.8.

Figure 4.8: Relation Common Schema

The “Relation Common Schema” has an identifier, Rel id, a list of con-
nected entities identifier, Entity Ids, optional attributes and optional en-
tity denormalizations (in MinR these two optional parts are absent, in MaxR
there exist).

The relation identifier is a composite key, created by composing the re-
lated entity keys, i.e. using concatenation. This is used as a sharding key
like we seen in Marijà overview.

Reading relation by Rel id is the most efficient method, because it is
performed with an hash access in constant time.

The field in Entity Ids block are indexed to enable an efficient access
of relations with one or more of the connected entity keys. These indexes
can be implemented in different way depending on the features offered by
the actual NoSQL used for the implementation (see Sections 5.3.2 and 5.3.2
for indexing techniques used in our implementations) but the commonly an
Hash Map with an ordered list of keys or a Btree are used.

Figure 4.9: Entity Common Schema

Also MinR entity tables and MaxR autorelations can be abstracted with
a single model named “Entity Common Schema”. In the Figure 4.9 we show
the “Entity Common Schema”. It consist of an Id column that contains
the entity keys and the Entity Attributes block that contains entity data.
Obviously the entities could be fetched by key with an hash access.

The MaxR autorelations can be seen as a special relations with only one
entity linked and with Rel Id equal to this only entity key (that is left out).
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Figure 4.10: The equivalence of MaxR Autorelation Schema and Entity Com-
mon Schema

Then the “Autorelation Schema” is equivalent to “Entity Common Schema”,
as shown in Figure 4.10.

Index related choice We decide to model efficient data access only for
the primary keys and the Entity Ids block. This could seem to be a lack
of the modeling, but there is a good reason for this choice.

As we have shown in previous chapter, the Marijà Framework optimize
a set of queries by ensuring that local data of a node are the only that are
necessary to perform queries allocated to that node. So, on the local node
should be created efficient way to access data in the way aligned to the query.

However, each node must response to all possible queries on its data. Not
only to the optimized ones. And must meet certain performance constraints.
So, we have to test the worst case. And the worst case is the simple scan of
data, without optimizations.

4.2 Comparing MinR and MaxR Models

4.2.1 Finding a Complete Method to Compare Models

The next step is figuring out when a model is preferred over another. We need
to fully compare the performance of two models in reading and writing. To
achieve this objective we base our comparison on the classic CRUD (Create,
Read, Update, Delete) operations applied to both entities and relations.

The costs of these operations will be the basis for the design choices.
While Create, Update and Delete operations can be executed in an uni-

vocal way, Read operation shows several variants. For example a Read op-
eration could be simply find an object by its key, another example could
be the select all objects in a collection that satisfy a predicate on an ob-
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ject attribute. This is the reason because in the Section 4.6 we introduce
the Relational Algebra as a bridge model to ensure completeness od Read
comparison.

4.2.2 Assumptions and Notations

In this section we introduce the assumptions and notations that are valid in
all this thesis.

Assumptions

• Relations are always binary.
• A relation has no attributes.
• Two relations are equal if they have the same entity identifiers.
• Entities have the same dimension in terms of memory occupation.
• The MinR in-memory join has no cost.
• Check for object existence needs the object fetching
• Update operations need the object fetching
• Delete operations do not need the object fetching

Notes The MinR in-memory join is the operation used to connect relation
object and related entities. The relative cost is dependent on used data
structure. For example a pointer-based data structure could really has no
cost.

Notes The last three assumption are done in accord to general NoSQL
databases features.

Notations

In the Table 4.3 we define symbols that we use to describe operations and
algorithms. In the Table 4.1 we formalize name and description of the CRUD
operators that are the subjects of tests. In the Table 4.2 we define the low
level operations with a description, a costs function (Cost) and the amount
of data to be processed (Data Processed). When we use a low level operation
in an algorithm step, its “Cost” enters in the total cost of algorithm. Also
a proc data(s) is added to the total cost, with s equal to operation “Data
Processed”.
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Symbols Descriptions
X set
x instance of X
E primary entity set (predicates are related only with E)
R relation set
r.ids list of relation entity ids
R Xidx index of R by X keys
#X X cardinality
{R} set of entities related to relation R
{E} set of relations related to entity A
size(X) memory print of one tuples of X

Table 4.3: Symbols

4.3 Comparing Create Operator

Create new entity: createE(E)

MinR and MaxR: createE(E) needs to check if an entity with the same
key already exists, if no the new entity is created. There is no difference
between models.

createE(E) =

find(E) + proc data(size(E))) + (1)
insert(E) + proc data(size(E))) (2)

Algorithm 4.1 MinR and MaxR: Create Entity

1: Find e in E by key
2: if if E already exist then . (1)
3: exit
4: end if
5: Insert entity E . (2)

Create new relation: createR(R)

Creating a relationship means connecting two entities between them. Then
a check is needed to ensure that the entities exist before insertion.

65



4.3. COMPARING CREATE OPERATOR

Relation Type Constraints In the RDBMS every type of relationship
has a special structure. The relational type constraints are enforced directly
by these structures.

Instead, in Marijà all relations are stored in the same manner. This is
similar to the RDBMS many-to-many relation structure. To ensure that
the type constraints are satisfied, a check is needed in the objects creation
phase. We define a checkConstraints(R, aid, bid) function that predicates
on R or the associated R Xidx index to verify if there are any relational
type constraint violations. This function will be called in the createR(R)

operator (cf. Section 4.3). A graphical example of constraint violations are
shown in Figure 4.3.

Figure 4.11: Relation type constraint violations

Definition of checkConstraints(R, aid, bid) Function: 1

• case (1,1): not (R.Aid = a id or R.Bid = b id), if a and b are
not already related with other entities. Check it with two ekeys access
at R Xidx.
• caso (1,n): not (R.Bid = b id), if b is not already related with other

entities. Check it with one ekeys access at R Xidx.
• caso (n,m): not (R.Aid = a id and R.Bid = b id), if this rela-

tion within a and b is not already exist. Check it on R by composing
relation key with entity keys and trying to find it.

In the cost function we assume always worst case: #{R} ∗ ekeys(R, 1).

1HP We assume it is a binary relation: A↔ B, aid and bid are respectively the identifier
of A and B entities to be connected
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MinR: Check that the entities involved exist, verify the relation type con-
straint by checking if exist some tuples that satisfy the checkConstraints(R, aid, bid)
control function e in R Xidx. If all constraints are satisfied we insert the re-
lation.

createR(R) =

#{R}*(find(X) + proc data(size(X)) + (1)
#{R}*(ekeys(R, 1) + proc data(#{R}*size(ID))) + (2)
insert(R) + proc data(#{R}*size(ID)) (3)

MaxR the algorithm is the same of the MinR one. The only difference
is in the amount of data to be written in relation tuple: #{R} ∗ size(X)
instead of #{R} ∗ size(ID). A minimal difference.

createR(R) =

#{R}*(find(X) + proc data(size(X)) + (1)
#{R}*(ekeys(R, 1) + proc data(#{R}*size(ID))) + (2)
insert(R) + proc data(#{R}*size(X)) (3)

Algorithm 4.2 MinR and MaxR: Insert Relation

1: // related entities existence
2: for each X in {R} do . (1)
3: Find X
4: if if X already exist then
5: exit
6: end if
7: end for
8: // type constraint check
9: Check if checkConstraints(R, aid, bid) is verified . (2)

10: if if it is not verified then
11: exit
12: end if
13: // insert relation
14: Insert relation in R . (3)

4.4 Comparing Update Operator

Update Entity: updateE(E)

In MinR there is no replication at all, then the changes is to be applied only
once on the entity. In MaxR there are a lot of entity copies in the relations
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collections. All copies must be synchronized and so they must be updated
together.

The Update Entity represent the other big difference between models.
MinR is better then MaxR when there are at least some entity replicas.

We assume that fetching of entity is needed before the updating. In some
implementations the update could be executed in-place 2.

MinR: updateE(E) is simply traduced in the fetching and the updating of
the entity.

updateE(E) =

find(E) + proc data(size(E))) + (1)
update(E) + proc data(size(E))) (2)

Algorithm 4.3 MinR: Update Entity

1: Find e in E by key . (1)
2: Update the entity e . (2)

MaxR: Firstly the entity is fetched from the autorelation E and directly
updated. Then for all relations to which it belongs, all entity replicas are
retrieved and updated.

createE(E) =

find(E) + proc data(size(E))) + (1)
update(E) + proc data(size(E))) + (2)
#{E}*(
ekeys(R, kE) + proc data(kR*size(ID)))) + (3)
kR*find(R) + proc data(kR*2*size(ID)))) + (4)
kR*update(R) + proc data(size(E))) (5)

)

2Update in-place: fetching object is not needed and only the attributes to be updated
are sent to database
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Algorithm 4.4 MaxR: Update Entity

1: // update primary entity
2: Find e in E by key . (1)
3: Update the entity e . (2)
4: // update entity replicas in related relations
5: for each R in {E} do
6: // retrieve related relations
7: Retrieve from R Xidx the relation keys . (3)
8: Fetch the relations rs from R by keys . (4)
9: for each r in rs do . (5)

10: Update the relation r
11: end for
12: end for

Update Relation: updateR(R)

The “Update Relation” operator cannot change the identifier of a tuple and
the Entity Ids in a relation tuple, but only other attributes.

MinR and MaxR: updateR(E) is simply traduced in the fetching and the
updating of the relation. There are no difference between models.

updateR(R) =

find(R) + proc data(size(R))) + (1)
update(R) + proc data(size(R))) (2)

Note that in MinR size(R) = size({R} ∗ ID) and in MaxR size(R) =
size({R} ∗ size(E))

Algorithm 4.5 MinR: Update Relation

1: Find r in R by key . (1)
2: Update the relation r . (2)

4.5 Comparing Delete Operator

Delete Entity: deleteE(E)

We assume that fetching is not needed to delete an object. We also assume
that delete cost is not dependent on the size of tuple.
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MinR and MaxR: deleteE(E) needs to check if the entity exists. Then,
for all relations to which the entity belongs, all replicas are retrieved and
updated

Finally perform the primary entity delete. There are no difference be-
tween models.

deleteE(E) =

find(E) + proc data(size(E))) + (1)
#{E}*(
ekeys(R, 1) + proc data(kR*size(ID))) + (2)
kR*(delete(R) + proc data(size(ID))) + (3)

)

delete(E) + proc data(size(ID)) (4)

Algorithm 4.6 MinR and MaxR: Delete Entity

1: Find r in R by key . (1)
2: if r not exists then
3: exit
4: end if
5: // delete all entity replicas in related relations
6: for each R in {E} do
7: // retrieve related relations
8: Retrieve from R Xidx the relation keys . (2)
9: for each r in rs do . (3)

10: Delete the relation r
11: end for
12: end for
13: Delete r . (4)

Delete Relation: deleteR(R)

Delete a relation only means remove the connection between entities without
deleting these.

We assume that delete cost is not dependent on the size of tuple.

MinR and MaxR: deleteR(R) needs to check if the relation exists and
then perform delete. There are no difference between models.
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deleteR(R) =

find(R) + proc data(size(R))) + (1)
delete(R) + proc data(size(ID)) (2)

Algorithm 4.7 MinR and MaxR: Delete Relation

1: Find r in R by key . (1)
2: if if r not exist then
3: exit
4: end if
5: Delete r . (2)

4.6 Comparing Read Operator

4.6.1 Using Relational Algebra to Ensure Complete-
ness of Read Comparison

As we introduced in the beginning of the chapter the Read operation shows
several variants. To ensure that our reading comparison between models is
complete, we have decided to use the Relational Algebra (RA) as interme-
diate model. Starting from basic operators of RA, any complex query can
be defined as a function of these. So, analyzing the mapping of RA basic
operators on MinR and MaxR we will identify a set of Read operations that
cover all possible reading scenario.

The RA basic operators are:

• Union
• Difference
• Cartesian Product
• Selection
• Projection
• Rename

Concerning the other three operators, we can assume that rename has no
cost at all. Sometimes the projection is provided directly by database, else it
is also performed on the in-memory structure without difference in models.
Finally the selection is executed within the fetch operation.

Then the Read operations that we will test are the simple find by key
and the fetching of multiple objects with a query predicate.

Here, for completeness, a description of the relational algebra primitive
operators.
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Set Operators

Under this category fall Union, Difference and Cartesian Product. By ana-
lyzing these operators we have realized that they can be applied only once
data is loaded into memory. They work only on the Entity Ids block of the
Relation Common Schema, that is introduced in Section 4.1.3. So the op-
erations performed in both MinR and MaxR are the same. By assumption
two relations are equal if they have the same entity identifiers.

An example of Union operation on both models is shown in Figure 4.12
(we do not show the entity tables). As we can see the result tuples contain
the same pairs of Entity Ids, so they are equivalent. Denormalizations block
is not relevant, indeed the values are not shown. Since there is a possibility
that data are not consistent in MaxR, in different tuples that denormalize the
same entity x (with the same Xid in Entity Ids) we could find two different
entity versions in Denormalizations block. However, this is not relevant for
the success of a set operation. Simply in the results could be found the first
version, the second, or even both of them.

Figure 4.12: Set Operation Equivalence on MinR and MaxR

There is only an extra cost for MinR to delete unnecessary entities at the
end of all operations, but it is irrelevant. If the implementation is well done,
this final activity has a very small cost compared to the rest.

When reading without a constraint on consistency, then for example with-
out waiting for the conclusion of active updates, it may happen that multiple
replicas of the same entity have different attribute values. It is not relevant
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for the operators job, they only work on keys and finally the results will
contain one version of those available.

Remember that our goal is to compare the two models and on these
operators the two strategies differ only in fetching relations. All set operators
are constructed as follows:

R1 = fetch(’R1’, p1)

R2 = fetch(’R2’, p2)

results = apply_set_operator(R1, R2)

where p1 and p2 are predicate used to filter relations and setOperator is
one between union, difference and Cartesian product.

In the next paragraphs we show how each set operator is mapped on our
models with a short description and a graphical example. In the examples
we will use the MinR model, but as we said before MaxR is equivalent.

Union (∪ ) returns data that belong to at least one relation, without rep-
etitions. The two relations involved must be union-compatible that is, the
two relations must have the same set of attributes. Example in Figure 4.13.

Figure 4.13: Union Example

Difference ( \ ) returns data that belong to only the first set and not two
the second one. The two relations involved must be union-compatible that
is, the two relations must have the same set of attributes. Example in Figure
4.14.

Figure 4.14: Difference Example
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Cartesian Product (× ) returns all combination of tuple of the first re-
lation concatenated with all of the second one. For the Cartesian product
to be defined, the two relations involved must have disjoint headers that is,
they must not have a common attribute name. In most case (i.e. for im-
plementing a join) a renaming of attributes is needed before using Cartesian
product. Example in Figure 4.15.

Figure 4.15: Cartesian Product Example

Special Relational Operators

These operators are used to change structure of a single relation or to filter
data. The operation that change the relation structure cannot be applied on
the identifier of relation and entities (Rel Id, Entity Ids in Relation Com-
mon Schema and Id in Entity Common Schema) but only on other columns
(Attributes and Denormalizations). This because all operators working on a
Marijà relation must return another Marijà relation, following the Common
Schema between Models (cf. Section 4.1.3).

They can be executed directly in fetch operation or also on an in-memory
relation.

Selection (σ ) is the operator used to filter data of a relation. It returns
all tuples that satisfy a Boolean predicate on attributes. Example in Figures
4.16 and 4.17.

Projection (π ) is the operator used to cut off some attributes from a rela-
tions. It returns all rows of a relation but with only the columns (attributes)
that are passed as input. Example in Figures 4.18 and 4.19.

Rename ( ρ ) is the operator used to change the attribute names. It returns
the entire relation but changing the header (attribute names). Example in
Figures 4.20 and 4.21.
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Figure 4.16: MinR: Selection Example

Figure 4.17: MaxR: Selection Example
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Figure 4.18: MinR: Projection Example

Figure 4.19: MaxR: Projection Example
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Figure 4.20: MinR: Rename Example

Figure 4.21: MaxR: Rename Example

77



4.6. COMPARING READ OPERATOR

Identification of Read operators

In conclusion to what we have said in previous paragraphs the only operator
that is needed to compare is the fetching of multiple relations with a predi-
cate. We call this operator selectR. Entity table can be seen as a particular
form of relation, an Autorelation (cf. Section 4.1.3), but as we will present
the algorithm change a bit. So we will compare also this operation variant,
named selectE.

Finally we add to comparison also the simple operation to find a single
object by its key, that is the basic Read operation. We denote this as findR
and findE for the finding of a relation and an entity respectively.

Find Entity: findE(E)

MinR and MaxR: findE(E) needs to compute the hash of entity key and
retrive the object. There are no difference between models.

findE(E) = find(E) + proc data(size(E))

Find Relation: findR(R)

MinR: findR(R) needs to compute the hash of entity key and retrive the
object. There are no difference between models.

findR(R) =

find(R) + proc data(#{R}*size(ID)) + (1)
#{R}*(find(X) + proc data(size(X))) (2)

Algorithm 4.8 MinR: Find Relation

1: // retrieve relation tuple
2: Find r in R by key . (1)
3: // retrieve related entities
4: for each x id in r.ids do . (2)
5: Find entity x by key x id
6: end for

MaxR findR(R) only needs to fetch the relation tuple by key that contains
also the related entities data.

findR(R) = find(R) + proc data(#{R}*size(X)
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Select Entity: selectE(E, p)

MinR and MaxR: selectE(E, p) needs to filter entity collection (or au-
torelation that is equivalent as said in Section 4.1.3) to satisfy p predicate.
There are no difference between models.

selectE(E, p) = scan(E) + proc data(kE*size(X)

Select Relation: selectR(R, p)

The selection of a relation could be done with a predicate that filter more
than one entity, or the relation itself. For MaxR nothing change because all
information are stored in relation tuple. For MinR the algorithm is different.
However the case with a predicate over the R is not so interesting. It differ
from MaxR one only for the additionally find by key needed to fetch the
entities. In our implementations we have also cover this case and we will
explain it in this section, but from here, if not differently specified, “Select
Relation” means select relations that verify a predicate on one entity.

To simplify algorithms we present only the case where the predicate is
relative to only one entity, the entity E. If the predicate is complex it can
be always splitted into a combination of simple ones. The results of the
fetch with first predicate can be filtered in a second time with others. Some
optimization could be done, but needs more investigations.

In “Select Relation” we can see the first big difference between the models.
In MaxR only the R collection scan is needed, in MinR the collection E is to
be scanned and after there are others operation to perform. The difference
between the two scans and the weight of others operations are the elements
to compare.

MinR: In the case of predicate over an entity set, firstly the E set is to
be scanned and filtered regards the selection predicate (scan). Then for
each E key in the result, the related relation ids are retrieved from R Xidx.
Successively all relations in R is fetched by these keys (ekeys). Finally all
other entities ∈ {R} are be loaded with the keys extracted from relations
fetched (find).

selectR(R, p) =

scan(E) + proc data(kE*size(E)) + (1)
ekeys(R, kE) + proc data(kR*size(ID))) + (2)
kR*find(R) + proc data(kR*2*size(ID))) + (3)
(#{R}-1)*kX*(find(X) + proc data(size(X))) (4)
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Check the notations in Section 4.2.2 how data processed by ekeys operation
is calculated.

Algorithm 4.9 MinR: Select Relation

1: // scan and filter primary entity set
2: Fetch entities es in E that satisfy predicate p . (1)
3: // retrieve related relations
4: Retrieve from R Xidx the relation keys . (2)
5: Fetch the relations rs from R by keys . (3)
6: // retrieve related entities
7: for each X in {R} do . (4)
8: if X 6= E then
9: Get X ids from X keys in rs without repetition

10: for each x id in X ids do
11: Find entity x by key x id
12: end for
13: end if
14: end for

In the case of the predicate is relative to the relation, the R set is to be
scanned and filtered, then all entities linked to results are to be fetched by
key.

selectR(R, p) =

scan(R) + proc data(kR*2*size(ID)) + (1)
#{R}*kX*(find(X) + proc data(size(X))) (2)

Algorithm 4.10 MinR: Select Relation with predicate over relation

1: // scan and filter relation set
2: Fetch entities rs in R that satisfy predicate p . (1)
3: // retrieve related entities
4: for each X in {R} do . (2)
5: Get X ids from X keys in rs without repetition
6: for each x id in X ids do
7: Find entity x by key x id
8: end for
9: end for
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MaxR: selectR(R, p) only needs to fetch relation tuples that satisfy the p
predicate, they contains also the related entities data.

selectR(R, p) = scan(R) + proc data(kR*#{R}*size(X)

4.7 Criteria for Model Selection

Operations
CRUD MinR MaxR
createE = =
createR = =
findE = =
findR 1 + {R} 1
selectE = =
selectR ∼ #E + kE + kR ∼ #R
updateE 1 ereplica
updateR = =
deleteE = =
deleteR = =

Memory
CRUD MinR MaxR
createE = =
createR – +
findE = =
findR = =
selectE = =
selectR – – ++
updateE – – ++
updateR = =
deleteE = =
deleteR = =

Table 4.4: MinR vs MaxR: Summary of Difference

Analyzing algorithms and cost functions presented in this chapter we have
built the Table 4.4. The table is divided in two sub-tables “Operations” and
“Memory”. In the first one we have summarized the difference of the models
in the number of operations to be performed for every CRUD function. In
“Memory” sub-table there are the difference in the amount of data processed
and transferred.

What we can conclude is that the only big difference are in the updateE

and selectR. To Update Entity in MinR one write is enough, in MaxR all
replicas in the associated relations are to be updated. The gap between the
models increases with the growth of the replica number. In Select Relation
instead there is not a clear winner. MinR involves more operations but it
needs to process less data than MaxR needs.

These two CRUD operators will be investigated with detailed tests in
Chapter 6.

Other differences shown in the table are not so relevant. In MaxR createR

only has to transfer more data than in MinR because it also has to store en-
tity copies in the relation. The algorithms are the same. This means that if
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we have to create a lot of new entities in a small time the MinR is the best
solution.

The gap in findR is even less than in createR because the amount of pro-
cessed data is the same. In MinR more request are needed than in MaxR,
one for each entity in addition to the relation fetch that is present in both al-
gorithms. The costs tend to be aligned when the entities become big because
the requests overhead loose importance. If an application needs to rapidly
read very small objects MaxR model is the solution, because the multiple
request overhead in MinR lower the performance. If the reads are slow or
the quantity of data to read is bigger there is no advantage to use one model
against the other.

These operators will not be tested extensively because the conclusions
that can be reached are clear. There is nothing else to investigate.

4.8 Consistency and Other Considerations

Other important considerations can be achieved in the consistency topic.
The absence of replication in the MinR model ensures that the entity

update is a single and atomic operation at logical level 3.
Instead, update an entity in the MaxR model involves writing all replicas.

This complex operation cannot be performed atomically (without using a
transaction mechanism). We call time-to-consistency the time that is
needed to update all replicas of an entity and then to reach full consistency.
A test is needed to measure time-to-consistency parameter (cf. Section
5.7) for a specific relation.

Also the total dimension of the database is different depending on of
which model is used to store relations. Obviously a MaxR relation is bigger
than MinR one because of the presence of entity replicas.

4.9 Summary

In this chapter we presented the two alternative strategy to model relation-
ships in a single Marijà node, MinR and MaxR. We described their theoret-
ical differences an we exposed a complete way to comparing the reading and
writing operations on them.

3The operator implementation must ensure that this single operation is also atomic
at the physical layer. Commonly the manipulation of a single tuple is already atomic in
NoSQL databases.
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For the comparison we based on CRUD operations identified for entities
and relations also using the Relational Algebra to find a complete set of Read
operations.

We have written the CRUD operation algorithms for both models. Ana-
lyzing them we have concluded that the models are complementary.

MaxR is better then MinR in a read-intensive scenario with small entities.
Instead MinR is good for a write-heavy scenario.

More investigations are needed for the selectR operator. In selecting
relations is not clear which model is the best. There is a difference in number
of operations, in processed data and in the object set that is to be scanned.
We expect that a model is better than the other only in some case.

Other selection criteria is the presence of time constraints on relation
consistency. A MinR relation is always strictly consistent. In MaxR the
denormalization of entities involves Eventual Consistency.

A test on updateE to measure how much MaxR is slower than the MinR
is needed. This results can be useful to understand the time-to-consistency
parameter introduced in Section 4.8.

Tests and test results are shown in Chapter 5.
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Chapter 5

Executing Tests on Models

5.1 Testing Objectives and Context

In this chapter we will describe the tests that we decided to implement for
comparing MinR and MaxR models.

Following the conclusions outlined in the Chapter 4, we carried out pre-
liminary tests to compare the behavior of the two models (MinR and MaxR)
with respect to each CRUD operator.

These preliminary tests (cf. 5.4) are needed to verify what we mentioned
in Section 4.7: the only CRUD operators to analyze in detail are selectR

and updateE, because they are the only that differ so much to be significant.
What we expect is to find a trade-off between the two models by eval-

uating reading tests (Selection Relation Operator) varying the number and
size of entities and relations. From the Update Entity Operator tests instead
we want to understand what is the burden of updating many replicas in the
MaxR model compared to the single update required by MinR.

These tests will be used to decide which of the two logical models is the
best for each kind of relation, given some of its properties. In addition of
this, they will also lead to decisions about the “Sharding Point” and, more
generally, on the maximum size of a single node relationships.

To execute tests we used the Evaluation Framework that we have de-
veloped, described in Chapter 6. In particular we have implemented the
database provider for MongoDB and Apache Cassandra.

We had to choose what NoSQL to use for our tests. There were some
prerequisites to meet:

• Support to scan feature. As we have said in Section 4.1.3 we have to
test data reading without any read optimization technique to achieve
our objectives
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Figure 5.1: Testing Workflow
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• A good documentation

• The availability of driver for Microsoft .NET, the technology used to
develop the Evaluation Framework

We have chosen MongoDB and Cassandra because they meet our prereq-
uisites and they are very different: MongoDB, a Document-based db opti-
mized for readings and to maximize single node performance, and Cassandra,
a Column-oriented db designed for a write-frequently distributed scenario.
We have not chosen a Key-Value database because of the first prerequisite:
most of the Key-Values do not provide scan feature.

We expect to see different results in the two implementations because the
databases are very different. In particular Cassandra, as a Column-oriented
database, needs additional data structures to ensure efficient readings (sec-
ondary indexes). As explained in Section 4.1.3 in our Common Schema only
the Entity Ids block is indexed (in addition of the primary key), so we expect
that Cassandra should not have great reading performance.

In Figure 5.1 we have reported a schema of the testing flow that summa-
rize this points:

• Preliminary Tests on CRUD operators

• Select Relation and Update Entity detailed tests

• What we expect by analyzing tests theoretically

• Execution of tests with the Evaluation Framework on Marijà node

• Analysis on MinR vs MaxR and Sharding Point (the test objectives)

• Conclusions

5.2 Logging methods

To measure the time costs of the operators we have created two kind of
logging methods. One at the level of the entire operators (coarse) and one
for the individual operations on the database (fine).

We used fine grained logs on single database calls to understand what are
the critical points in the algorithms. Once we have found them and fixed the
tests to run, we have re-executed tests with coarse grained logging configu-
ration. With this we have produced the results of our tests and evaluated
the difference between models.
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For example in “Select Relation” operator the MinR algorithm requires
three calls to databases: scan(E) to filter the primary entity set, ekeys(R, keysE)
to find R tuples related to these entities and findByKeys(F, keysF ) to fetch
the F entities that are needed (that is assumed equals to kF ∗find(F )). The
coarse grained logging registers the time of entire “Select Relation” and the
fine grained logging registers the times of the three database calls.

Each block of code that we have wanted to log has been re-executed
many times, how many times is a configuration parameter, and with the
data obtained we have estimated mean, variance, minimum and maximum
value, with these statistical formulas:

x =
1

n

n∑
i=1

xi : mean

σ2 =
1

n

n∑
i=1

(xi − x)2 : variance

min(X) = min (xi ∈ X) : minimum

max(X) = max (xi ∈ X) : maximum

Where n is the number of test rounds and X represents the set of data
samples for the operation that we have to log.

5.3 Experimental Settings

5.3.1 Hardware and Software Settings

Tests are done on a single desktop machine with these characteristics:

Intel(R) Core(TM) i5-3750K CPU @ 3.40 GHz
8,00 GB DDR3
160GB Intel X-25M G2 Solid-State Hard Drive
Windows 8 Pro 64-bit

The NoSQL databases used for testing are MongoDB 2.2.3 (2013-02-01) and
DataStax Community edition of Apache Cassandra 1.2.2 (2013-02-20) in-
stalled and running one at a time on the system.

The Evaluation Framework that we will present in Chapter 6 is written
on the Microsoft .NET Framework.
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To work with MongoDB we have used the official 10gen-supported C#
/ .NET driver for MongoDB version 1.7 [1]. The driver is very stable and
mature and allows to use all the features of MongoDB. Several other drivers
have been developed by the community, but we chose to use the official one.

For Cassandra there is no high-level official drivers, but there is a list of
recommended projects as a preferred alternative instead of using raw Thrift
interface [12] directly.

We chose FluentCassandra open source project [37], because it is simple
to use and it implement all commands present in last version of Apache
Cassandra.

We evaluated other alternatives such as Aquiles, Cassandraemon and
cassandra-sharp, but the first two implement high-level mechanisms that
might mask some behaviors which we want to keep under control and cassandra-
sharp is not mature enough yet.

As we will see in the results below, we believe that even Fluentcassandra
still has something to be fixed, in particular as regards long connections in
time and managing a high amount of data. In our tests we had to refresh
the connection with each new measurement because we noticed a kind of
accumulation phenomenon on subsequent operations.

In practice when we did the same thing several times the times were
always growing. Instead with the connection refresh between two measure-
ments the times became very similar.

5.3.2 Database Schema used for Testing

Figure 5.2: Database Schema for testing

For our tests we will use a simple database schema. It consist of a single
relation R between two entities E and F.

The relation has no constraint. We used an (n,m) relation to have more
flexibility, but in the test results discussions we will explain any differences

89



5.3. EXPERIMENTAL SETTINGS

or consequences introduced by more restrictive integrity constraints: (1,1)
and (1,n) relations.

The entities have a numeric key, a fixed name created with the pattern
’nameXXXXXX’ where XXXXXX is the key with left zero-padding and an
attribute ’attr’ that will be initialized with a string of Esize characters, to
test with different entity size. The parameters of this schema are:

Rcount used to establish the maximum #R of test

Esize used to change size(E)

Rounds used to set the number of test repetitions

CoarseLog used to set the type of logs (coarse or fine)

MongoDB Schema Mapping

In MongoDB (cf. Section 2.4.2) we have stored the entities and the relations
objects in documents. We have created three Document Collections: E, F
and R. For simplicity we have used the string type for all the attributes and a
flatten structure of document. We store each column of the Common Schema
blocks (cf. 4.1.3) as an attribute of MongoDB document. An example of
tested schema is:

E: [{ R: [{

_id: ’1’, _id: ’000001_000001’,

name: ’name000001’, e_id: ’1’,

attr: ’’ f_id: ’1’,

},{ e_name: ’name000001’,

_id: ’2’, e_attr: ’’,

name: ’name000002’, f_name: ’name000001’,

attr: ’’ f_attr: ’’

}, ... ] },{

_id: ’000001_000002’,

F: [{ e_id: ’1’,

_id: ’1’, f_id: ’2’,

name: ’name000001’, e_name: ’name000001’,

attr: ’’ e_attr: ’’,

},{ f_name: ’name000002’,

_id: ’2’, f_attr: ’’

name: ’name000002’, }, ... ]

attr: ’’

}, ... ]
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This is an example of MaxR schema realization. For MinR model the schema
is the same but without the Denormalizations in R documents (e name,
e attr, f name, f attr).

MongoDB offers an efficient secondary index implementation (BTree). We
used it for indexing the relations documents with entity keys. This means
that the ekeys + findByKeys operations will be carried out directly from
the database (cf. Section 6.5.1)

Cassandra Schema Mapping

Cassandra is a Column-based database (cf. Section 2.4.3). The entities and
relations are stored in different column families (E, F and R). As in the
example in Figure 5.3 we store each column of the Common Schema blocks
(cf. 4.1.3) as a different column of Cassandra related Column Family. The
highlighted columns in figure are the optional denormalization that we found
only in MaxR.

Figure 5.3: Cassandra Schema Mapping

Cassandra provides a secondary indexing feature, but the operations that
we can do on it are limited only at the equalities queries. Range queries are
not supported because in the current implementation, they are using a not
ordered hash indexing.

In addition, the DataStax documentation reports that this simple fea-
ture works well only with small number of unique values to index, i.e. for
classification [25].

Since this limits too much the operations on the relations, we have decided
to implement a custom secondary index with the One-to-Several Column
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Families Indexes pattern recommended in DataStax documentation [26].

We report here the key points of this technique:

• One indexed value matches several row keys
• Each index is a single row with one super column per indexed value
• Index row key is the name of the index
• Index super column names are the values being indexed
• Index sub-column names are the row keys being indexed
• There is no sub-column value

Figure 5.4: One-to-Several Column Families Indexes with Supercolumn

Figure 5.5: Cassandra Schema Mapping: Index

A general example of One-to-Several Column Families Index is shown in
Figure 5.4 and the specific implementation for Database Schema used for
Testing is shown in Figure 5.3.

This and other techniques are explained well also by Ed Anuff in his blog
pages [9, 10].
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5.4 Preliminary Tests

In this section we present the results of preliminary tests. This tests as we
said in Section 5.1 are needed to confirm the theoretical assumptions that
we have exposed in Section 4.7.

The results on MongoDB implementation are shown in Tables 5.2 and
5.1.

Both tables report the time costs of each CRUD operations in case of a
sparse and a full relations. With “sparse” we mean that not all entity e are
in relation with one or more entity f . Instead with “full” we mean that all
entity e are in relation with at least one entity f .

CRUD Sparse relation Full relation
size(E) ∼ 50 byte #E = 1000, #R = 100 #E = 10, #R = 10000

MinR[ms] MaxR[ms] MinR[ms] MaxR[ms]
createE 0,0670445 0,0620414 0,10061 0,60155
createR 0,0024016 0,00290194 0,29745565 0,25657643
findE 0,0480327 0,0490334 0,49964 0,39941
findR 0,1250821 0,0410271 0,20013 0,1001
selectE 1,9262514 1,9227638 0,6004 0,55125
selectR 2,839279 0,1521017 46,90421 60,25334
updateE 36,6707633 37,4844611 33,57822 75,19826
updateR 0,1512948 0,1541704 1,18493 0,39967
deleteE 0,0540424 0,0520344 0,50042 0,10006
deleteR 0,1581905 0,1581627 16,99203 18,88321

Table 5.1: Preliminary tests on MongoDB: CRUD operations, size(E) ∼
50 byte

The only difference between two tables is the size(E) parameter. With
big entities the differences between two models grows.

Testing on Cassandra give similar results. Cassandra results are shown
in Tables 5.4 and 5.3.

According to the assumptions, the operators that really differ largely
when we change logical model are selectR and updateE.

Also, we can see the difference of the MinR multiple requests overhead
in findR and the penalty of MaxR multi-update in createR when the entity
size and relation cardinality are big. Nevertheless these are less important
than the firsts two because the costs are however very small.

The detailed reports of these tests are shown in the next sections.
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CRUD Sparse relation Full relation
size(E) ∼ 10Kb #E = 1000, #R = 100 #E = 10, #R = 10000

MinR[ms] MaxR[ms] MinR[ms] MaxR[ms]
createE 0,1150769 0,1200802 0,10007 0,10007
createR 0,00250164 0,00310265 0,29226131 0,45879466
findE 0,0710472 0,0720421 0,40027 0,4001
findR 0,146468 0,0410274 0,20013 0,10004
selectE 33,2085865 33,0015712 0,90066 0,70093
selectR 33,3356201 0,174501 50,73389 524,22053
updateE 35,5814197 35,8271221 35,74434 317,81568
updateR 0,189303 0,1701231 0,8006 0,70047
deleteE 0,0560438 0,0520357 0,30066 0,20013
deleteR 0,1644188 0,160107 19,74068 25,71719

Table 5.2: Preliminary tests on MongoDB: CRUD operations, size(E) ∼
10.000 byte

CRUD Sparse relation Full relation
size(E) ∼ 50 byte #E = 1000, #R = 100 #E = 10, #R = 10000

MinR[ms] MaxR[ms] MinR[ms] MaxR[ms]
createE 0,681453 0,510341 0,30005 0,29889
createR 0,2467189 0,199791 0,93145838 1,00767964
findE 0,450828 0,301788 0,80054 0,70026
findR 0,938364 0,270065 0,50027 0,2002
selectE 9,991591 8,338505 1,99307 1,60082
selectR 18,639692 22,884967 4188,40966 11268,71447
updateE 0,961803 1,408406 2,24437 95,53648
updateR 0,341824 0,281162 0,50036 0,70768
deleteE 0,78143 0,540361 0,8552 0,50085
deleteR 1,111182 0,862785 104,91701 97,59858

Table 5.3: Preliminary tests on Cassandra: CRUD operations, size(E) ∼
50 byte
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CRUD Sparse relation Full relation
size(E) ∼ 5Kb #E = 100, #R = 100 #E = 10, #R = 1000

MinR[ms] MaxR[ms] MinR[ms] MaxR[ms]
createE 0,320208 0,280181 0,3002 0,30026
createR 0,0980648 0,1100777 0,9512419 1,11054101
findE 0,220147 0,24937 0,80051 0,7002
findR 0,42028 0,170111 0,6004 0,40087
selectE 13,446265 13,033331 2,66169 1,90043
selectR 25,762906 31,701302 4265,93176 17384,42828
updateE 1,0071 1,014188 2,5244 186,77612
updateR 0,250161 0,18012 0,60037 0,7005
deleteE 0,38026 0,31021 0,80057 0,40026
deleteR 0,801854 0,550373 101,94431 230,04331

Table 5.4: Preliminary tests on Cassandra: CRUD operations, size(E) ∼
5.000 byte

5.5 Detailed Tests Presentation Schema

To expose each detailed test we will follow this schema:

• In Test Objectives we will present the motivation of test.

• In Test Scenario we will present how the test will be actuated with
figures, an algorithm of test and other information organized in a
schematic form:

– Setup: test steps to fill the database, following the schema pre-
sented in Section 5.3.2

– Test: test steps to carry out the measurements

– Test Parameters: a summary of what parameters we can configure
for the test

– Schema static properties: the set of properties of the schema that
remain fixed for the entire test

– Schema variable properties: the set of properties of the schema
that change during the test execution

• In Test Hypothesis we will describe what we expect to find from the
execution of test
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• In Test Results we will present the results of the test summarized
in tables and graphs. We will present only a portion of them, some
combination of parameters that show all the behaviors that we want
to describe. In graphs we report for MinR and MaxR cases the mean
value of measures with the indication of standard deviation (MinR−σ,
MinR+σ, MaxR−σ, MaxR+σ) that is the square root of calculated
variance (cf. Section 5.2), to give an idea of performance variations.

• In Test Discussion we will expose the conclusions we have reached.

5.6 Testing Select Relation Operator (selectR)

As we have explained in Section 4.6.1 the selectR operator consists in read-
ing of multiple tuples of relation and connected entities.

Theoretical investigations on the models led us to think that the first
comparison to be done would be the one on the difference in cardinality
between the primary entity and the relation, because the scan in MinR is
done on the entity set and in MaxR is directly done on the R tuples.

The costs (simplified, as hypothesis, in a binary relation) of the algo-
rithms for the two models are these below. 1

MinR:

scan(E) + proc data(kE*size(E)) +

ekeys(R, kE) + proc data(kR*3*size(ID))) +

kF*(find(F) + proc data(size(F)))

MaxR:

scan(R) + proc data(kR*(size(E) + size(F)))

Analyzing these costs we can see that the heavier operations are the entity
scan in MinR and the relation scan in MaxR (this is true for kR� #R, that
is the common case, instead if kR ∼ #R the ekeys cost becomes comparable
or also greater than the scan cost). The scan costs is proportional to the
cardinality of the scanned set and then the first thing to check is the difference
between #E and #R (see Test 1: #E vs #R).

The other big difference between the two algorithms is in the amount of
data to be processed, prepared and transferred to central memory. In MinR

1The notations are shown in Section 4.2.2
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are processed exactly the data we need, then kE entities E, kF entities F,
kR ID pairs of relation. In contrast, being MaxR entities replicated on each
tuple in R will be processed much more data, kR tuples with size equal to
the sum of the size of the entities. In addition, when kR grows, the ekeys
component in MinR takes importance, too. In the second test (see Test 2:
Ereplica Impact), we investigate the impact of these two aspects.

The targets of these tests are two, choosing the best model for read op-
erations on a relation and the identification of possible sharding point.

5.6.1 Test 1: #E vs #R

Test Objectives

With this test we would evaluate, in “Select Relation” operator, how much
the scan cost changes in two algorithms when #R grows, with fixed #E.

To isolate the contribution of the scan from the total cost of the algorithm
we have to cancel the costs of other components. This can be achieved
by choosing a predicate on the entity E that does not return any results
(kE = 0). If we have no E, we also do not search for associated relations, so
the ekeys is not called. Of course also the data to be processed are zero.

Test Scenario

Setup:

1. Create Rcount entities in E
2. Create 2 ∗Rcount entities in F

Test:

1. Create new relation in R until #R = 2 ∗ #E is reached and measure
Select Relation time for several value of #R.

Figures 5.6, 5.7 show the Test step for the MinR and MaxR models start-
ing from a completed Setup. Algorithm 5.1 reports Setup and Test steps in
pseudocode.

Test parameters:

Ecount: fixed number of E entities
Esize: fixed size of E entities

Rounds: fixed number of repeats of the operations
steps: list of #R values in which to take a log
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Figure 5.6: MinR, Select Relation Test 1: #E vs #R

Figure 5.7: MaxR, Select Relation Test 1: #E vs #R

Schema static properties:

kE = 0

kR = 0

kF = 0

#E = Ecount

#F = 2 ∗ Ecount

Schema variable properties:

#R = from 1 to 2 ∗#E
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Algorithm 5.1 Test 1: #E vs #R

procedure Test readR multi 1
// Setup
Create Ecount entity in E
Create 2 ∗ Ecount entities in F
// Test
for i from 0 to (2 ∗#E − 1) do

Create new relation in R between ei mod #E and fi
if log step is reached then

Log selectR (for kE = 0, kR = 0) . LOG
end if

end for
end procedure

Test Hypothesis

What we expect varying #R maintaining the same value of #E is that in
the MinR model nothing change, because the scan is on the entity table
then on the fixed #E tuple. In MinR instead we expect a proportional
linear increment to the #R value. We also expect that the others costs are
irrelevant with respect to scan cost when the numbers are high enough.

The scan on EMinR costs less with respect the one on RMaxR, because
of the bigger size of RMaxR tuples that contain the copies of all the entities
linked in relation and that correspond to more data to read from memory.

size(EMinR) = size(E)

size(RMaxR) = size(E) + size(F )

Having said this, we can assume that for #R << #E use the MaxR
model costs less but, when the #R grows, this cost increases until it reaches
the constant cost of MinR model. The overtaking is presumably when the
#R is close but slightly smaller than #E, because of the size questions seen
before.

An hypothetical chart might look like the one in Figure 5.8.
From this general behavior we can make some observations based on the

specific type of relationship. A (1,1) relation will have the same cardinality
as the linked entities, #R = #E = #F . If the relation is non-mandatory 2

2Non-mandatory relation means that can exist some entities that are not in relation
with any others
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Figure 5.8: Hypothetical chart, Select Relation Test 1: #E vs #R

this constraint is relaxed in #R ≤ min(#E,#F ).
And yet, a (1,n) relation will have at maximum the same cardinality of

the most populous linked entity, #R 6 max(#E,#F ).

R(1, 1) : #R 6 min(#E,#F )

R(1, n) : #R 6 max(#E,#F )

R(n,m) : #R is free

From these considerations we can draw the conclusion that for non-
mandatory (1, 1) and (1, n) relations with #E > #F , MaxR model is the
best choice, because as we can see in Figure 5.9 we are in the “MaxR usually
wins” zone. Nevertheless, when #R ∼ #E MinR wins, so if the relation is
mandatory the right choice is the MinR model.

Test Results

We have run this test on the two our implementations with several combina-
tions of parameters.

Rcount = { 10, 100, 500, 1000, 2000, 3500, 5000, 6500, 8000, 9000,
10000, 11000, 12000, 20000, 30000, 40000, 50000, 100000 }

Esize = { 0, 10, 100, 1000, 10000, 100000 }

Rounds depends on Rcount parameters, from 10 to 1000 rounds

100



CHAPTER 5. EXECUTING TESTS ON MODELS

Figure 5.9: Hypothetical chart, R(1,1) and R(1,n) in Select Relation Test 1:
#E vs #R

It was not possible to test all combinations on both databases. On Cas-
sandra we have reached the limit of the central memory and some timeouts
on connections with high value in Rcount or Esize parameters (Rcount ¿
30000 with Esize = 10000). It could be a non-optimal configuration problem
or a problem of drivers used (cf. 5.3).

We have reported here only some results that show all the necessary
information to our test.

In Tables 5.5, 5.6 and Figures 5.10, 5.11, 5.12, 5.13 we can see MongoDB
results for the Rcount values 10000 and 100000 and for two Esize values, 10
and 10000 and in Tables 5.7, 5.8 and Figures 5.14, 5.15, 5.16, 5.17 those of
Cassandra for the Rcount values 1000 and 10000 and for two Esize values,
10 and 10000.

The difference in the chosen parameters for testing MongoDB and Cas-
sandra is because of the impossibility with Cassandra to test a relation with
100000 tuples for the memory limits seen before and because MongoDB has
very fluctuating behavior with small collections of documents. This could be
caused by particular optimization in fetching data from memory and disk by
Mongo, that use memory-mapped files (cf. 2.4.2).

The result is that loading 1 or 100 documents from Mongo consumes the
same quantity of time. Probably because they are loaded together in the
same chunk of memory and the scan loads always the entire chunk. But this
is only our conjecture.
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#R = 10000
size(E) = 10

#E MinR[ms] MaxR[ms]
1000 3,122182 0,480326
2000 3,202134 0,760506
3000 3,06204 1,000884
4000 3,002008 1,32088
5000 2,901934 1,561022
6000 2,982114 1,921276
7000 3,102066 2,121414
8000 3,082066 2,44185
9000 2,921942 2,801958

10000 2,981994 3,062264
11000 3,001996 3,3022
12000 3,002008 3,622414
13000 3,022024 3,962646
14000 3,06204 4,2028
15000 3,06204 4,462968
16000 3,001886 4,763282
17000 2,941852 5,023348
18000 3,022094 5,263508
19000 3,082054 5,60383
20000 3,00212 5,88392

#R = 10000
size(E) = 10000

#E MinR[ms] MaxR[ms]
1000 4,062694 0,480338
2000 3,482322 0,840566
3000 3,622414 1,260858
4000 3,66244 1,62131
5000 3,602408 1,96153
6000 3,562374 2,30154
7000 3,442292 2,72182
8000 3,622412 3,222242
9000 3,482314 3,622516

10000 3,802534 4,082944
11000 3,502328 4,543028
12000 3,442282 5,203462
13000 3,522336 5,563816
14000 3,502328 5,704018
15000 3,68246 6,184236
16000 3,542348 7,084726
17000 3,422274 7,204802
18000 3,6224 7,324882
19000 3,48232 8,185546
20000 3,522334 8,545688

Table 5.5: selectR Test 1: Mongo #R = 10000
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#R = 100000
size(E) = 10

#E MinR[ms] MaxR[ms]
10000 25,91721 3,10207
20000 25,9173 5,90397
30000 26,21747 8,80517
40000 25,71713 11,70782
50000 25,81717 14,8099
60000 25,81721 17,61173
70000 25,91728 20,31408
80000 25,8172 23,31554
90000 26,01734 26,2175

100000 25,91724 29,21948
110000 25,91781 31,82233
120000 26,01733 34,82209
130000 26,01737 37,62443
140000 26,41766 40,62704
150000 25,81775 43,52964
160000 26,01727 46,13074
170000 26,01734 49,3329
180000 25,81717 51,83454
190000 26,21796 54,53634
200000 25,91724 57,53834

#R = 100000
size(E) = 10000

#E MinR[ms] MaxR[ms]
10000 54,93658 5,60371
20000 45,13059 9,60692
30000 45,73039 14,21064
40000 45,73047 19,31284
50000 45,03001 28,51903
60000 45,53025 27,11862
70000 49,13277 32,12141
80000 45,12953 36,62441
90000 45,23017 40,32569

100000 48,13204 44,02933
110000 44,52961 48,93312
120000 53,53567 58,23881
130000 53,43561 59,43951
140000 44,72978 71,04734
150000 45,43018 76,14966
160000 44,82981 74,14869
170000 44,32954 78,75302
180000 44,52964 94,46244
190000 53,93597 101,86782
200000 53,53567 111,47427

Table 5.6: selectR Test 1: Mongo #R = 100000
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Figure 5.10: selectR Test 1: Mongo #R = 10000, size(E) = 10

Figure 5.11: selectR Test 1: Mongo #R = 10000, size(E) = 10000
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Figure 5.12: selectR Test 1: Mongo #R = 100000, size(E) = 10

Figure 5.13: selectR Test 1: Mongo #R = 100000, size(E) = 10000
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#R = 1000
size(E) = 10

#E MinR[ms] MaxR[ms]
100 32,12884 5,45171
200 31,67331 11,5607
300 30,51116 16,82002
400 30,38954 22,62087
500 32,25328 28,7431
600 30,44418 34,70468
700 29,51908 40,1489
800 29,92373 47,71436
900 30,05114 52,75347

1000 30,27979 60,21925
1100 29,31202 66,94703
1200 29,79531 72,65485
1300 29,67889 78,16307
1400 29,49624 87,59702
1500 30,10178 93,49912
1600 29,82127 101,22249
1700 30,44891 108,40819
1800 30,17039 115,37136
1900 30,64855 123,06742
2000 30,13804 131,67863

#R = 1000
size(E) = 10000

#E MinR[ms] MaxR[ms]
100 97,58747 12,10692
200 97,89473 23,3505
300 96,08872 39,62885
400 97,44838 47,83742
500 94,12754 62,51619
600 96,29469 79,58306
700 94,96362 94,36719
800 96,46734 102,86674
900 94,6196 114,36232

1000 95,83696 129,68995
1100 95,41987 151,60817
1200 94,82551 159,15263
1300 96,86264 172,61836
1400 97,04485 187,21899
1500 99,34833 205,07223
1600 95,66641 214,12544
1700 99,18801 228,88999
1800 101,97237 242,73074
1900 94,98239 255,86764
2000 94,62157 271,19528

Table 5.7: selectR Test 1: Cassandra #R = 1000
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#R = 10000
size(E) = 10

#E MinR[ms] MaxR[ms]
1000 697,00292 61,13618
2000 696,01348 130,53162
3000 700,354 214,39338
4000 700,21566 311,3088
5000 698,07754 412,68894
6000 704,19404 535,0684
7000 703,1904 657,83166
8000 699,91642 796,63704
9000 705,41336 937,93334

10000 701,20962 1095,0463
11000 700,43148 1240,4725
12000 704,2145 1428,0467
13000 693,37576 1589,6737
14000 694,54654 1805,4059
15000 698,55318 1966,0778
16000 699,71012 2155,5133
17000 769,39978 2395,2753
18000 761,64838 2624,4864
19000 749,7197 2955,2693
20000 745,63166 3176,3304

#R = 10000
size(E) = 10000

#E MinR[ms] MaxR[ms]
1000 1478,2919 128,23682
2000 1486,2511 271,5584
3000 1476,4686 425,30868
4000 1475,273 597,13788
5000 1470,4363 769,74576
6000 1476,1747 965,59778
7000 1477,8797 1188,7811
8000 1530,6251 1375,467
9000 1488,5104 1621,3456

10000 1505,0875 1842,8407
11000 1487,22 2077,8801
12000 1489,0797 2333,9451
13000 1473,9916 2654,4935
14000 1518,8027 2887,6091
15000 1494,8272 3225,0747
16000 1490,8105 3536,1286
17000 1480,7146 3877,9275
18000 1490,9656 4311,7697
19000 1566,7167 4567,773
20000 1533,2202 5185,6208

Table 5.8: selectR Test 1: Cassandra #R = 10000
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Figure 5.14: selectR Test 1: Cassandra #R = 1000, size(E) = 10

Figure 5.15: selectR Test 1: Cassandra #R = 1000, size(E) = 10000
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Figure 5.16: selectR Test 1: Cassandra #R = 10000, size(E) = 10

Figure 5.17: selectR Test 1: Cassandra #R = 10000, size(E) = 10000
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From a comparison of the tables reported for this test (cf. Tables 5.5, 5.6,
5.7, 5.8), we can notice that MongoDB is faster than Cassandra in reading
operations on single node with the same amount of data.

We could expect this since Cassandra belong to Column-oriented NoSQL
class and, as we have seen in Section 5.1, it needs optimized data access
structure to enhance reading performance.

The last information that we can get from the numbers is that when the
#R become big enough the trend is not linear, it gets a non-linear component,
but the conclusion don’t change.

Test Discussion

MinR vs. MaxR From results we can see that our hypothesis were cor-
rect. In all tests the MinR chart trends is quite constant, and the MaxR one
grows with the increase of #R.

MinR is always cheaper than MaxR after the threshold is reached (#R >
#E).

Sharding To evaluate when to do sharding we can choose a time threshold
beyond which we cannot go with the single operation and then with the
parameters of our schema (#R e #E) launch the test and take the number
of #R that corrisponds to the chosen time threshold. This is the sharding
point.

For example suppose to have a database schema the statistically has
#E = 10000 with Esize = 10000 (∼ 10KB) and a (1,1) non optional
relation R (#R = #E) and we want to deploy on Cassandra.

We run the test for #E = 10000 and Esize = 10000 on the node and
on the graph (suppose that is equal to the one on our test machine 5.17) we
read Time =∼ 1500ms the value correspondent to #R = 10000.

But for the purpose of our application the single operation can take
Time =∼ 100ms at maximum. Then we repeat tests with the #R parameter
divided by increasing number of nodes and for 10 nodes, #E = 10000/10 =
1000 (the other our graph 5.15) we can read for #R = 10000/10 = 1000 the
value Time =∼ 96ms for MinR.

In Cassandra we need 10 nodes with sharding point on R of 1000 tuples.

If we repeat the test on mongo what comes out is that one node is enough
(the reading of the value from the graph in Figure 5.11 gives us a Time value
less than 5ms, counting the variance). No sharding is needed.
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5.6.2 Test 2: Ereplica Impact

Test Objectives

In this second test we try to measure the impact of entity replicas of MaxR
(on proc data component) versus the one of the ekeys component of MinR
in “Select Relation” algorithm when the number of replicas in the MaxR
model increases.

To do this we need to increase the number of Ereplica without changing
other parameters.

So we can start with our database schema with one E entity that is in
relation with Rcount F entities (#E = 1, #R = Rcount, #F = Rcount) and
run a query with a variable predicate on F that results in growing kR from
1 to Rcount (F.name 6 ‘nameXXXXXX’, with XXXXXX : 000001 →
Rcount).

In this test the scan cost of both models is intentionally the same, because
of #R = #F (the predicate is on F, check the explanation in Section 5.6).

Figure 5.18: MinR, Select Relation Test 2: Replicas impact

Test Scenario

Setup:

1. Create #F entities in F
2. Create 1 entity in E
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Figure 5.19: MaxR, Select Relation Test 2: Replicas impact

3. For each F entity, create a relation in R between this and the only E
entity

Test:

1. Log queries with changing Ereplica from 1 to Rcount, like these:

SELECT * FROM R WITH F.name <= ‘name000001’

: kR = 1, Ereplica = 1
SELECT * FROM R WITH F.name <= ‘name000100’

: kR = 100, Ereplica = 100
SELECT * FROM R WITH F.name <= ‘nameRcount’

: kR = Rcount, Ereplica = Rcount

Figures 5.18, 5.19 show the Test step for the MinR and MaxR models
starting from a completed Setup. Algorithm 5.2 reports Setup and Test
steps in pseudocode.

Test parameters:

Rcount: fixed number of relation
Esize: fixed size of entities

Rounds: fixed number of repeats of the operations
steps: log steps
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Schema static properties:
kE = 1

#E = 1

#R = Rcount

#F = Rcount

Schema variable properties:
kF = from 1to Rcount

kR = kF

Ereplica = kF

Algorithm 5.2 Test 2: Ereplica Impact

procedure Test readR multi 2
// Setup
Create Rcount entities in F
Create 1 entity in E
foreach f in F do

Create a relation in R between this and the only E entity
end for
// Test
for i from 1 to Rcount do

if log step is reached then
Log Select Relation F.name <= ‘name{i}padded’ . LOG

end if
end for

end procedure

Test Hypothesis

What we expect is that with only one copy of E (Ereplica = 1) the amount of
data processed and returned are the same in both models, because of absence
of multiple replica of the same entity.

When kR increases, by changing query, also the Ereplica grows, because
all the R tuples contains the same E entity (with e id = 1). So MaxR
implementation process kR∗(size(E)+size(F )) data units, instead of MinR
that process only 1∗size(E)+kR∗ (size(F )+2∗ ID) (because of kF = kR)
with a clear advantage of MinR strategy.
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But MinR has the ekeys component that increases with kR growing.
Furthermore, MinR has the findByKeys component, but we assume that
this cost is no relevant. This assumption will be confirmed by the measures.

We can suppose that the replicas impact on MaxR raises costs more than
the ekeys component on MinR when the Esize (and so the global data size
of all replicas) is high enough, but not always.

An expected graph could be the one in Figure 5.20 where both MinR and
MaxR grow with kR, but with different speed (given by that we said above).

MinR is always slower with small kR because of the more operations that
it must do, but when kR grows the scenario could change. In details the
query on MinR fetches only one replica of the E entity, so an augment of
size(E) means a constant increase in all the graph. Instead, MaxR grows
proportionally with the Ereplica and the Esize parameters.

Finally if the size(E) is small the MaxR will grow more slowly than MinR,
else if it is big the MaxR will overcome MinR.

In the Figure 5.21 there is another graph with the expected trends when
the Esize parameter changes. This can be useful for understanding what
value of Esize balances the replica weight in MaxR and the ekeys costs in
MinR. Of course this will change according to the number of replicas and
then to kR parameter.

Figure 5.20: Varying Ereplica in Select Relation Test 2: Replicas Impact
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Figure 5.21: Varying ESize in Select Relation Test 2: Replicas Impact

Test Results

We have computed test for some combinations of Rcount and Esize.

Rcount = { 1000, 2000, 3000, 4000, 5000, 10000 }

Esize = { 0, 10, 100, 200, 300, 400, 500, 600, 750, 1000, 2000,
3000, 5000 }

Rounds depends on Rcount parameters, from 10 to 100 rounds

In Tables 5.9, 5.10 and Figures 5.22, 5.23, 5.24, 5.25 we can see MongoDB
results for the Rcount = 1000 when we change Esize or Ereplica parameters.

In Tables 5.11, 5.12 and Figures 5.26, 5.27, 5.28, 5.29 we can see instead
the Cassandra results with the same characteristics.

Test Discussion

The numbers of MongoDB are aligned with our assumptions.
Cassandra has a strange behavior. MaxR has an higher costs than MinR

when there are no secondary replicas. In addition, MaxR grows slowly than
MinR with the increasing of replica number. This is the opposite to what we
expected. The reason could be found in the column-oriented data organiza-
tion. Column-oriented organization is efficient when only a small subset of
columns are needed. To retrieve multiple columns it is necessary to perform
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#R = 1000
Esize = 0

Ereplica MinR[ms] MaxR[ms]
1 0,641025 0,60043

100 1,671785 0,900615
200 3,15262 1,45094
300 4,26135 1,951335
400 4,10276 2,085785
500 4,903815 2,757605
600 6,203525 3,00173
700 6,514305 3,753065
800 7,30983 4,10274
900 8,156005 4,75372

1000 8,80588 5,103395

#R = 1000
Esize = 5000

Ereplica MinR[ms] MaxR[ms]
1 0,70042 0,60014

100 1,451 2,601705
200 2,598825 4,95331
300 3,251885 7,50501
400 3,9532 11,66161
500 4,70319 15,36627
600 5,67972 19,3281
700 6,35432 24,59521
800 7,055285 27,83905
900 7,883455 31,5649

1000 8,905945 36,98915

Table 5.9: selectR Test 2: Mongo #R = 1000, changing Ereplica

Figure 5.22: selectR Test 2: Mongo #R = 1000, Esize = 0
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Figure 5.23: selectR Test 2: Mongo #R = 1000, Esize = 5000

#R = 1000
Ereplica = 1

Esize MinR[ms] MaxR[ms]
0 0,641025 0,60043

10 0,650255 0,50032
100 0,650255 0,484035
200 0,65072 0,600915
300 0,65096 0,5504
400 0,650465 0,500365
500 0,650695 0,550365
600 0,60063 0,500575
750 0,70077 0,55038

1000 0,700485 0,60039
2000 0,65012 0,500335
3000 0,65045 0,62497
5000 0,70042 0,60014

#R = 1000
Ereplica = 1000

Esize MinR[ms] MaxR[ms]
0 8,80588 5,103395

10 8,75585 5,25354
100 8,85537 5,80388
200 8,97755 6,054605
300 8,760965 6,50433
400 8,355565 6,854545
500 8,855915 7,35491
600 8,96051 7,70513
750 8,95595 8,50588

1000 8,55567 9,65669
2000 8,555685 16,07271
3000 8,755285 22,6943
5000 8,905945 36,98915

Table 5.10: selectR Test 2: Mongo #R = 1000, changing Esize
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Figure 5.24: selectR Test 2: Mongo #R = 1000, Ereplica = 1

Figure 5.25: selectR Test 2: Mongo #R = 1000, Ereplica = 1000
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#R = 1000
Esize = 0

Ereplica MinR[ms] MaxR[ms]
1 35,17193 66,84498

100 36,609 68,67072
200 42,82912 69,94852
300 48,06896 71,57529
400 53,24517 72,35409
500 58,42327 74,48272
600 65,15845 74,86541
700 70,78959 76,78127
800 76,78656 78,50948
900 83,22419 80,14967

1000 88,99807 80,84971

#R = 1000
Esize = 5000

Ereplica MinR[ms] MaxR[ms]
1 31,61055 105,8703

100 35,38876 102,0968
200 41,16409 104,0276
300 46,62017 106,641
400 53,02661 109,5197
500 58,82645 111,4072
600 65,27574 110,9693
700 71,13109 114,8372
800 78,75024 116,62
900 84,31552 117,7293

1000 89,42283 118,2179

Table 5.11: selectR Test 2: Cassandra #R = 1000, changing Ereplica

Figure 5.26: selectR Test 2: Cassandra #R = 1000, Esize = 0
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Figure 5.27: selectR Test 2: Cassandra #R = 1000, Esize = 5000

#R = 1000
Ereplica = 1

Esize MinR[ms] MaxR[ms]
0 35,17193 66,84498

10 31,75729 66,91108
100 30,66036 68,2432
200 30,81841 68,40364
300 31,3144 68,80326
400 31,19999 69,08822
500 30,51166 70,33656
600 30,56986 71,0129
750 31,40501 81,68767

1000 30,80501 74,16554
2000 32,3627 87,12384
3000 31,3909 87,02209
5000 31,61055 105,8703

#R = 1000
Ereplica = 1000

Esize MinR[ms] MaxR[ms]
0 88,99807 80,84971

10 88,52652 80,60569
100 91,56112 82,39226
200 89,03774 82,67459
300 90,51434 84,51141
400 88,05873 85,7217
500 89,83986 85,38014
600 88,9346 91,15357
750 89,58988 94,06008

1000 90,40885 91,19213
2000 90,82746 99,23354
3000 90,61795 105,5642
5000 89,42283 118,2179

Table 5.12: selectR Test 2: Cassandra #R = 1000, changing Esize

120



CHAPTER 5. EXECUTING TESTS ON MODELS

Figure 5.28: selectR Test 2: Cassandra #R = 1000, Ereplica = 1

Figure 5.29: selectR Test 2: Cassandra #R = 1000, Ereplica = 1000
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many reads. More requests with a small number of columns is better than
one request with many columns. MaxR relation table has more columns than
MinR one. This is because MaxR fetching is slow.

However, when the number of rows to fetch grows, MinR has to read a lot
of data from the index (ekeys). MaxR instead maintain the same overhead
of multiple column fetch but it is spread over several data. This is because
the MinR growing is higher than the MaxR one.

5.7 Testing Update Entity Operator (updateE)

Updating an entity is the other important operation to compare between
MinR and MaxR strategies.

The usefulness of this test is not to know when one is better than the
other, because as we have seen (cf. Section 4.4) the MinR is always better,
but it is to see how much time has to be elapsed to be sure that all replicas
of the entity involved will be updated, that is how long it takes the data set
to be strictly consistent.

Remember the concept of Eventual Consistency (cf. 2.3.2), or that the
data set may not be consistent during a certain time interval, but at the end
of this must return to be strictly consistent.

We did two tests on this topic, the first just to confirm our hypothesis
that update a tuple does not depend on the cardinality of the set to which
it belongs (Test 1: #R grows). The second is the real measurement of what
we have call the “Time to Consistency” where is the replica number of the
entity that we have to update, the parameter that changes (Test 2: #Replica
grows).

5.7.1 Test 1: #R grows

Test Objectives

Like we have said in the introduction, in this test we change the #R value,
creating new relations not related with the entity that must be updated.

At every predefined step of #R we log the “Update Entity” operation on
the E entity with key = 2, named here e2.

For MinR this is translated into only one update in the E set, but for
MaxR this means that in addition to the primary entity update, all the
replicas in the R set are to be updated.

In this first test there are any replica of the e2 entity in the R set, because
all the relation are related to e1.
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That’s why we expect a similar behavior between two models and that it
is to be constant in the entire test (changing #R).

We also draw a graph that show the impact of growing size of entity on
the update time (of the only copy) just to compare the sensibility of different
implementations. This is only a secondary test, useful for clarifying ideas
about how some behaviors differ in different databases.

Test Scenario

Setup:

1. Create Rcount entities in F
2. Create 2 entities in E
3. Create only one relation in R between e1 and f1 entities.

Test:

1. Create new relations in R between e1 all the F entities fi with i from
2 to #F and log updateE(’e’, 2) for several value of #R.

Figures 5.30, 5.31 show the Test step for the MinR and MaxR models
starting from a completed Setup. Algorithm 5.3 reports Setup and Test
steps in pseudocode.

Test parameters:

Rcount: fixed number of relation
Esize: fixed size of entities

Rounds: fixed number of repeats of the operations
steps: log steps

Schema static properties:

kE = 1

kR = 0

kF = 0

#E = 2

#F = Rcount

Schema variable properties:

#R = from 1to #F
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Figure 5.30: MinR, Update Entity Test 1: #R grows

Figure 5.31: MaxR, Update Entity Test 1: #R grows
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Algorithm 5.3 Test 1: #R grows

procedure Test updateE 1
// Setup
Create Rcount entities in F
Create entity 1 in E
Create entity 2 in E
Create a relation in R between e1 and f1
// Test
for i = 2; i <= Rcount; i+ + do

Create a relation in R between e1 and fi entity
if log step is reached then

Log Update Entity e2 . LOG
end if

end for
end procedure

Test Hypothesis

What we expect is that both graphs (of MinR and MaxR models) are very
similar, because both need to update only one copy of the entity.

In addition we expect also that the trends are constants when #R changes,
because the update should use the hash map to find the entity to update by
key and update it. These operations should be not related with the cardi-
nality change.

Test Results

We have computed tests for some combinations of Rcount and Esize.

Rcount = { 1000, 2000, 3000, 4000, 5000, 10000 }

Esize = { 10, 100, 1000, 2000, 5000, 10000, 50000 }

Rounds depends on Rcount parameters, from 10 to 100 rounds

Primary Test: Changing #R In Table 5.13 and Figures 5.36, 5.37 we
can see MongoDB results for the Rcount = 1000 (maximum #R) when we
change #R parameter, but maintaining Ereplica = 1.

In Table 5.14 and Figures 5.38, 5.39 we can see instead the Cassandra
results with the same characteristics.
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Esize = 10
#R MinR[ms] MaxR[ms]

1 31,8223 30,7151
100 35,0266 34,4002
200 35,1162 34,5868
300 34,6775 35,7103
400 34,0873 33,8325
500 35,5768 34,5058
600 36,1522 35,1458
700 33,7718 32,8884
800 34,852 35,8465
900 35,51 32,4941

1000 29,4852 32,6846

Esize = 50000
#R MinR[ms] MaxR[ms]

1 30,2583 33,8341
100 31,5904 34,798
200 30,4405 37,6955
300 33,2853 36,1506
400 34,7739 34,2236
500 31,4736 38,8067
600 30,2975 35,4004
700 29,1943 38,7675
800 30,8552 37,1202
900 29,2598 36,8247

1000 34,2582 38,6645

Table 5.13: updateE Test 1: Mongo changing #R

Figure 5.32: updateE Test 1: Mongo #R = 1000, Esize = 10
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Figure 5.33: updateE Test 1: Mongo #R = 1000, Esize = 50000

Esize = 10
#R MinR[ms] MaxR[ms]

1 0,35022 0,85054
100 0,4003 0,70046
200 0,34995 0,60039
300 0,35024 0,60065
400 0,35028 0,70044
500 0,30016 0,60039
600 0,40025 0,80251
700 0,35024 0,74981
800 0,4003 0,64987
900 0,40023 0,65046

1000 0,35026 0,65066

Esize = 50000
#R MinR[ms] MaxR[ms]

1 1,5987 2,40636
100 2,00128 1,20076
200 1,20492 2,4016
300 1,20096 1,60118
400 1,6009 2,02494
500 1,20078 2,00274
600 1,22964 2,20148
700 1,4008 1,99898
800 1,20504 2,00344
900 1,40268 1,99868

1000 1,40298 1,80114

Table 5.14: updateE Test 1: Cassandra changing #R
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Figure 5.34: updateE Test 1: Cassandra #R = 1000, Esize = 10

Figure 5.35: updateE Test 1: Cassandra #R = 1000, Esize = 50000
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Secondary Test: Changing Esize In Table 5.15 and Figures 5.32, 5.33
we can see MongoDB results for the Rcount = 1000 (maximum #R) when
we change Esize parameter.

In Table 5.16 and Figures 5.34, 5.35 we can see instead the Cassandra
results with the same characteristics.

#R = 1
Esize MinR[ms] MaxR[ms]

10 31,8223 30,7151
100 30,7604 31,2476
500 30,8749 30,8089

1000 30,7136 30,9987
2000 33,5032 30,9931
5000 30,9055 30,7235

10000 30,8938 30,2607
50000 30,2583 33,8341

#R = 1000
Esize MinR[ms] MaxR[ms]

10 29,4852 32,6846
100 36,677 34,9913
500 34,0687 36,4841

1000 33,1797 34,4785
2000 32,7803 33,8424
5000 34,9712 35,2493

10000 33,3378 36,9916
50000 34,2582 38,6645

Table 5.15: updateE Test 1: Mongo changing Esize

Figure 5.36: updateE Test 1: Mongo kR = 1

Test Discussion

From results we can see that our hypothesis were correct. In all tests where
we change the #R parameter the graphs of the two models are very similar
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Figure 5.37: updateE Test 1: Mongo kR = 1000

#R = 1
Esize MinR[ms] MaxR[ms]

10 0,35022 0,85054
100 0,3175 0,65058
500 0,3002 0,6004

1000 0,3502 0,65037
2000 0,35978 0,70046
5000 0,50031 0,70016

10000 0,90101 1,40087
50000 1,5987 2,40636

#R = 1000
Esize MinR[ms] MaxR[ms]

10 0,35026 0,65066
100 0,50049 0,60034
500 0,45006 0,75046

1000 0,15013 0,70047
2000 0,35021 0,60039
5000 0,44984 0,70038

10000 0,60043 1,09968
50000 1,40298 1,80114

Table 5.16: updateE Test 1: Cassandra changing Esize
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Figure 5.38: updateE Test 1: Cassandra #R = 1

Figure 5.39: updateE Test 1: Cassandra #R = 1000
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and with a constant behavior. Then the #R value is not related to the
update cost and, also, the two models have no difference if there is no other
entity copy in addition to the primary one.

We can also see that Cassandra is really faster than Mongo in write
operations. This was predictable because Cassandra is optimized for writing
and MongoDB excels in reading (cf. Sections 2.4.2 and 2.4.3)

In the secondary tests, where we change the Esize maintaining a fixed
#R the numbers show that Cassandra is more sensitive to the changes in
tuple size than MongoDB, in fact the Mongo graphs (5.36 and 5.37) are
constants, instead ones of Cassandra (5.38 and 5.39) rise with a big Esize.

5.7.2 Test 2: #Replica grows

Test Objectives

In this test, we really investigate the burden of updating many replicas of
the same entity.

We start from the schema produced by the running of the previous test
(cf. Test 1: #R grows), with Rcount F entities all in relation with the first
of the two E entities e(1), and changing step by step all the relations of the
R set, from e1 → fi to e2 → fi, maintaining constant the R cardinality (this
is unnecessary given the previous test results, but it is introduced to make
the test independent from others).

Doing this each new relation contains a replica of the entity e2 and they
must be updated by “Update Entity” operation.

In the predefined steps we launch and log the update operation.
With these graphs we can evaluate the time that is needed to reach the

strict consistency.
This can be an indication of when to do sharding, bacause if we have

a time constraint on consistency we can read on the graph the maximum
number of replicas that is compatible with this. Then we can know the
maximum cardinality of R table on the single node before to do sharding,
because the worst-case is when we have replicas of the same entity on each
tuple.

Test Scenario

Setup: (we can start from the output database of Test 1: #R grows or do
these tasks)

1. Create Rcount entities in F
2. Create 2 entities in E
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3. Create only one relation in R between e1 and f1 entities.

Test:

1. Create new relations in R between e1 all the F entities fi with i from
2 to #F and log updateE(’e’, 2) for several value of #R.

Figures 5.40, 5.41 show the Test step for the MinR and MaxR models
starting from a completed Setup. Algorithm 5.4 reports Setup and Test
steps in pseudocode.

Test parameters:

Rcount: fixed number of relation
Esize: fixed size of entities

Rounds: fixed number of repeats of the operations
steps: log steps

Schema static properties:
kE = 1

kF = 0

#E = 2

#F = Rcount

Schema variable properties:{
#R = from 1to #F

kR = #R

Test Hypothesis

What we expect is that the inclusion of new relations with the entity e(2) does
not cause any cost change in the MinR model. In MaxR instead we expect a
linear and proportional increase of the update time, depending to the number
of entity replicas, which is equal to the number of relations created.

A hypotetical chart that summarize these conditions is reported in Figure
5.42.

We also expect that if we have more than one relation that contains
replicas of E entities we can take the sum of maximum estimated cardinality
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Figure 5.40: MinR, Update Entity Test 2: #Replica grows

Figure 5.41: MaxR, Update Entity Test 2: #Replica grows

134



CHAPTER 5. EXECUTING TESTS ON MODELS

Algorithm 5.4 Test 2: #Replica grows

procedure Test updateE 2
// Setup
Create Rcount entities in F
Create entity 1 in E
Create entity 2 in E
Create relations in R between e1 and all the F entities
// Test
for i = 2; i <= Rcount; i+ + do

Delete a relation in R between e1 and fi
Create a relation in R between e2 and fi entity
if log step is reached then

Log Update Entity e2 . LOG
end if

end for
end procedure

Figure 5.42: Hypotetical chart, Update Entity Test 2: #Replica grows

and suppose to have only one relation with this maximum number of tuples.
To check this we’ll use the costs measured for two different relations, R1 and
R2, with #R1 = 2 ∗ #R2, and we’ll compare R1 costs with two times R2
costs. This because in single node the operations should be serialized.

Test Results

We have computed test for some combinations of Rcount and Esize.
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Rcount = { 1000, 2000, 3000, 4000, 5000, 10000 }

Esize = { 10, 100, 1000, 2000, 5000, 10000, 50000 }

Rounds depends on Rcount parameters, from 10 to 100 rounds

Primary Test: Changing kR In Table 5.17 and Figures 5.47, 5.48 we
can see MongoDB results for the Rcount = 1000 when we change kR (and
then Ereplica) parameter.

In Table 5.18 and Figures 5.49, 5.50 we can see instead the Cassandra
results with the same characteristics.

#R = 1000
Esize = 10

kR MinR[ms] MaxR[ms]
1 31,9404 33,917

100 35,9996 32,4833
200 33,5835 29,9019
300 33,7695 36,6307
400 37,4394 36,2438
500 33,6957 39,1019
600 31,2809 34,2199
700 33,8348 32,3456
800 31,237 34,0274
900 38,2122 36,2134

1000 33,1966 45,2967

#R = 1000
Esize = 50000

kR MinR[ms] MaxR[ms]
1 33,745 48,3451

100 33,2208 55,6878
200 36,3131 62,5308
300 36,16 60,5604
400 31,438 71,3857
500 33,1189 75,6601
600 34,4792 79,9427
700 35,8115 81,2379
800 35,4948 108,297
900 38,3002 105,923

1000 32,0932 123,238

Table 5.17: updateE Test 2: Mongo #R = 1000, changing kR

Secondary Test: Changing Esize In Table 5.19 and Figures 5.43, 5.44
we can see MongoDB results for the Rcount = 1000 when we change Esize
parameter.

In Table 5.20 and Figures 5.45, 5.46 we can see instead the Cassandra
results with the same characteristics.

Secondary Test: R = R1 +R2
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Figure 5.43: updateE Test 2: Mongo #R = 1000, Esize = 10

Figure 5.44: updateE Test 2: Mongo #R = 1000, Esize = 50000
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#R = 1000
Esize = 10

kR MinR[ms] MaxR[ms]
1 0,4503 1,15112

100 0,40021 7,70475
200 0,40026 13,9648
300 0,45029 20,5998
400 0,45032 27,716
500 0,30018 34,8797
600 0,40028 41,6618
700 0,3002 50,1999
800 0,35022 56,8618
900 0,35021 65,2452

1000 0,44977 72,5408

#R = 1000
Esize = 50000

kR MinR[ms] MaxR[ms]
1 1,59886 4,0026

100 1,60108 76,78
200 1,00066 148,124
300 1,20072 230,36
400 1,20088 299,332
500 1,00314 392,229
600 1,19862 543,322
700 1,00194 607,614
800 1,20072 685,147
900 1,00068 725,928

1000 1,20104 820,332

Table 5.18: updateE Test 2: Cassandra #R = 1000, changing kR

Figure 5.45: updateE Test 2: Cassandra #R = 1000, Esize = 10
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Figure 5.46: updateE Test 2: Cassandra #R = 1000, Esize = 50000

#R = 1000
kR = 1

Esize MinR[ms] MaxR[ms]
10 31,9404 33,917

100 35,8403 33,5723
500 35,1713 33,9348

1000 33,1724 32,5183
2000 32,0577 33,3793
5000 31,0045 32,9033

10000 34,0442 34,4822
50000 33,745 48,3451

#R = 1000
kR = 1000

Esize MinR[ms] MaxR[ms]
10 33,1966 45,2967

100 35,886 34,5681
500 33,0506 33,9461

1000 38,6555 37,9264
2000 32,7037 42,6057
5000 35,3309 42,6326

10000 32,6591 49,2828
50000 32,0932 123,238

Table 5.19: updateE Test 2: Mongo #R = 1000, changing Esize
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Figure 5.47: updateE Test 2: Mongo #R = 1000, kR = 1

Figure 5.48: updateE Test 2: Mongo #R = 1000, kR = 1000
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#R = 1000
kR = 1

Esize MinR[ms] MaxR[ms]
10 0,4503 1,15112

100 0,35822 0,90062
500 0,40027 0,95305

1000 0,39947 0,95065
2000 0,40029 1,40139
5000 0,50093 1,25086

10000 0,80057 1,90625
50000 1,59886 4,0026

#R = 1000
kR = 1000

Esize MinR[ms] MaxR[ms]
10 0,44977 72,5408

100 0,20014 73,608
500 0,50141 80,9899

1000 0,30017 100,276
2000 0,35024 107,369
5000 0,55103 151,771

10000 0,50027 244,929
50000 1,20104 820,332

Table 5.20: updateE Test 2: Cassandra #R = 1000, changing Esize

Figure 5.49: updateE Test 2: Cassandra #R = 1000, kR = 1
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Figure 5.50: updateE Test 2: Cassandra #R = 1000, kR = 1000

#R1 = 1000, #R2 = 500
Esize R1[ms] R2*2[ms] R1-R2[ms] R1/R2

10 45,2967 68,26288 -22,96618 0,663562686
100 34,5681 66,34228 -31,77418 0,521056858
500 33,9461 68,01642 -34,07032 0,499086838

1000 37,9264 68,27252 -30,34612 0,555514869
2000 42,6057 70,71884 -28,11314 0,602466047
5000 42,6326 75,09746 -32,46486 0,567696963

10000 49,2828 87,8041 -38,5213 0,561281307
50000 123,238 153,71652 -30,47852 0,801722547

Table 5.21: updateE Test 2: Mongo #R = #R1 + #R2 = 1000, changing
Esize
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#R1 = 1000, #R2 = 500
Esize R1[ms] R2*2[ms] R1-R2[ms] R1/R2

10 72,5408 66,63457333 5,906226667 1,088636069
100 73,608 76,97807333 -3,370073333 0,956220347
500 80,9899 76,67286 4,31704 1,056304669

1000 100,276 83,70699333 16,56900667 1,19794053
2000 107,369 97,98050667 9,388493333 1,095820012
5000 151,771 142,0740667 9,696933333 1,068252663

10000 244,929 223,95484 20,97416 1,093653524
50000 820,332 835,91526 -15,58326 0,981357847

Table 5.22: updateE Test 2: Cassandra #R = #R1 + #R2 = 1000, chang-
ing Esize

Test Discussion

From results we can see that the MaxR graphs in Cassandra grow linearly
in proportion to the number of Ereplica and MinR is always constant. This
is equal to what we supposed. The good is that Cassandra behavior is pre-
dictable.

MongoDB instead has a strange behavior with small numbers. When the
Esize is less then about 2000 the graph, with increasing Ereplica, is constant
and it is similar with the MinR one. An explanation could be given by the fact
that MongoDB performs the write operations to main memory (and write
to a log file the operations to ensure durability) and only when a predefined
chunk of memory is full it performs a flush to disk.

Below to a certain threshold, probably, for both MinR and MaxR the
size of updated data does not fill more than one chunk and then flush to disk
takes place only when the connection is closed at the and of test, giving the
same time in both tests. For bigger Esize MaxR use more chunks in memory
and then the linear increment of cost is visible.

Another effect that probably derives from this difference in writing is that
MongoDB is much less sensitive to increasing Esize than Cassandra. In fact,
Mongo is clearly faster than Cassandra with large objects, while Cassandra
wins with small ones.

In the second test we can check this behavior: in Mongo graph (5.48 the
two trends is very similar until the Esize reach the 2000 point and then
the MaxR grows faster than MinR, instead for Cassandra (5.50) the MaxR
growing factor is always bigger, from the start (Esize = 10).

We have also found that in Cassandra we can take the sum of maximum
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cardinality of all the relations that contains E entities replica and use this
number to launch our tests like if we have only one big relation. Check the
Table 5.22. There are small difference between update on one R (R1) and
on two R with half cardinality of R1 (we have used the double of the costs
logged for R2, with #R1 = 2 ∗#R2).

Instead, for MongoDB there is a difference, but it is fixed around 30ms
which is the time of minimal write operation for mongodb (cf Table 5.21).

With these graphs if we have some time constraint on consistency we can
launch the test with supposed Esize and with Rcount equal to the maximum
number of estimated Ereplica and find the maximum #R that is compatible
with our constraint.

If we have more than one relation, we can divide this number on all of
them following the same proportion of the maximum estimated cardinalities.
If we are using MongoDB before evaluating results we have only to subtract
from them the contributes of additional operations (30ms for each relations
in addition to the first on our machine).

In conclusion we can say that if you want to use Cassandra in a write-
heavy scenario and if you need a fast consistency convergence, MinR model
is definitely the best, as expected.

In MongoDB instead you can also evaluate the strategy MaxR if the
relation cardinality is not too high (#R < 2000 on test machine), for the
particular behavior that it has in write operations.

5.8 Summary

In this chapter we have presented the tests that we have done and the results
on MongoDB and Cassandra implementations. Some results are not in line
with what we have concluded with our theoretical reasoning. In Table 5.23
we summarize test results. For each test we have reported if the results
of MongoDB and Cassandra are coherent with theoretical conclusions. In
particular Cassandra has a strange behavior in selectR Test 1: #E vs #R
and Mongo in updateE Test 2: #Replica grows.

Running these tests on a single node with the estimated parameters of
a relation (Rcount, Esize, Ereplica, . . . ) give us graphs that can be read
and interpreted to take decisions on which logical model to adopt (MinR vs
MaxR objective) and on maximum size (cardinality) of the tested relation
(Sharding objective).

Changing database means getting different results. In most cases the
differences are only in numbers but sometimes the conclusions can change a
lot. For example from our tests it is evident that for Cassandra the MinR
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Operators Tests MongoDB Cassandra
selectR Test 1 Yes Yes

Test 2 Yes No
updateE Test 1 Yes Yes

Test 2 No Yes

Table 5.23: Test Results Summary

model is usually the best, also when the MaxR should show its advantages.
This happens because the column based data model is not suited to the
MaxR model, that has many columns to be fetched together. In MongoDB
instead MinR advantages are those that fall because the writes cannot be
individually completed. So MaxR, that updates many replicas at the same
time, is not so penalized in Mongo context.

In general we have to run the tests on the node before taking some deci-
sions.
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Chapter 6

Design of Evaluation
Framework and its
Implementation

6.1 Introduction

In this chapter we will describe the Evaluation Framework Architecture, how
it works and how it was developed. Then we will expose what we have im-
plemented to perform tests described in this thesis. From the results of these
we compiled the tables presented in Chapter 5. We will also present some
interesting points of our database provider implementations for MongoDB
and Cassandra.

Finally we will plan some features to implement in the future releases.

6.2 Evaluation Framework Architecture

The Evaluation Framework is a system to run tests on a single Marijà node.
It consist of some piece:

• A single Marijà Worker, that is responsible of database setup and which
implements CRUD and Relational Algebra basic operators.

• A Tester, the benchmark platform responsible to run tests and store
the results

• A set of Tests, that are the implemented tests to run

The Marijà Worker will be reusable in the Marijà project as single node
basic operation performer. It is divided in two interface: the ISetupManager
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used for setup database schema and the ICRUD that implement all basic
CRUD and Relational Algebra basic operators. The interfaces are to be
implemented for the specific database to test. The implementation is called
Database Provider. A schema of Marijà worker is shown in Figure 6.1.

A copy of the Tester is deployed directly on a Marijà node and use the
Worker functionality to execute tests as shown in the Figure 6.2.

Figure 6.1: Marijà Worker

Figure 6.2: Marijà Node Deploy
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Figure 6.3: Marijà Worker Architecture

Figure 6.4: Tester Architecture
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6.3 Abstract Model of Marijà Single Node

To design the Marijà node we used the classical object-oriented program-
ming paradigm. Then we have implemented the entire architecture with the
Microsoft .NET technology.

To present the architecture we present the main classes and interfaces.
The UML Class Diagram of Marijà Worker and the Tester are shown respec-
tively in Figures 6.3 and 6.4.

Marijà Worker classes and interfaces description

• ISetupManager is responsible to setup database. It contains a list of
all relations and entities metadata

• EntityMetadata contains the properties of an entity

• RelationMetadata contains the properties of a relation, like name,
type and connected entities

• ICRUD contains methods to execute the basic CRUD and Relational
Algebra functionality on a database

• IRelation represents an in-memory structure of a query result. They
are composed of a IRelationRow list

• IRelationRow represents a single relation, a single tuple of the results

• MaxR, MinR implements IRelation for the two logical models

• MaxRRow, MinRRow implements IRelationRow for the two logical mod-
els

• IMaxRCRUD, IMinRCRUD identify an ICRUD as implementation of MaxR
or MinR model

• MaxRCRUD, MinRCRUD are abstract implementations of IMaxRCRUD
and IMinRCRUD with the implementations of Relational Algebra op-
erators that works on IMinR and IMaxR in memory structure and then
they are not database dependent
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Tester related classes and interfaces description

• ITest represent a test to run

• BaseTest is an abstract implementation of ITest with the base struc-
ture used to run my tests. It include a workflow to setup and destroy
database, run tests and save logs

• TestBench is the test platform that is responsible to load database
provider, choose the logical model to use and run tests

• LogExtensions is a utility class that contains the static methods to
take logs

• CollectionStatistics is an abstract class that include methods to
retrieve statistics on database collection, like cardinality, average size
of objects and more. It is used in log phase. It is to extend with specific
database implementation or with custom logic.

6.4 Tests Implementation

The Tester platform can run a list of tests that are classes which implement
ITest interface.

We created a general abstract class BaseTest, that contains the common
testing workflow of all our tests.

BaseTest is responsible to create database before test starts, to run tests,
to save logs and to destroy database after the test. It contains a list of value
for each parameter. The BaseTest parameter are:

• Rcount, that is the maximal cardinality of relation set R
• Ecount, that is the maximal cardinality of entity set E
• Esize, that is the size in bytes of the attr attribute of all entities. This

is useful to change the size of each entity.

Tests are repeated for all combinations of configured parameters.
There is also a common test configuration class, TestBench. It contains

the value of Log parameters:

• Rounds, number of repeated execution of fine grained logged operation

• FullOperatorRounds, number of repeated execution of coarse grained
logged operation
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• VarianceRounds, number of execution used to check variance. Check
the LogExtension code in Appendice A

TestBench also contains three dictionary to store the expected collection
statistics (objects count, objects average size and number of relevant objects)
for the operation that is in execution. They must be updated in the specific
test implementation. We have extended CollectionStatistics abstract
class for handle them. The name of this class is ExpectedCollection-

Statistics.

We wrote four test classes:

• PreliminaryTest extends BaseTest to run preliminary tests

• TestSelRRcount extends BaseTest to run the Select Relation Test 1:
#E vs #R

• TestSelRRcount extends BaseTest to run the Select Relation Test 2:
Ereplica Impact

• TestSelRRcount extends BaseTest to run the Update Entity Test 1:
#R grows and Test 2: #Replica grows

6.5 Providers Implementation

The part of code commented in this section are reported in Section A.

We implemented two full database provider. One for MongoDB and the
other for Apache Cassandra.

Creating a provider means implementing only three interfaces:

• ISetupManager

• IMinRCRUD

• IMaxRCRUD

6.5.1 MongoDB Implementation

We used the official 10gen-supported C# / .NET driver for MongoDB version
1.7 [1]. The driver is very stable and mature and allows to use all the features
of the database, i.e. secondary indexing.
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MongoSetupManager implements ISetupManager using the driver class
MongoClient to configure the client parameters and MongoServer to estab-
lish connection. The disposable object is one returned by the MongoServer

RequestStart method.

MongoDB collections need to be sometimes compacted. So the CompactDB
method is implemented to run the “compact” command on all of them.

MongoMinRCRUD, MongoMaxRCRUD implements IMinRCRUD and
IMaxRCRUD in a simple way. There are only some things to highlight: the
use of the secondary indexing that MongoDB provides out-of-the-box, how
we execute queries and how we have integrated logging.

The use of built-in secondary indexes has imposed a simplification of
LoadRelations algorithm (which is equivalent to selectR). The ekeys oper-
ation is no longer to be called manually to retrieve the relation keys and then
use them to fetch relation tuples. This mechanism is responsibility of Mon-
goDB. The algorithm provide only the query directly on “X id” attribute of
relation collection (X is the related entity).

Querying of MongoDB is very simple. All operators that we need are
provided by the driver. So we have only translated our query object in a
IMongoQuery derivative object and we have used it to query database.

In Mongo implementation also the Update operators algorithms are slightly
different. This is because MongoDB provides the update in-place feature:
fetching the object is not needed to perform update. Only the attributes to
be updated are sent to database.

Finally, to integrate log capability in Mongo query operations without
making a dirty implementation, we have inserted it in the middle of Mon-
goDB functions and LINQ ToList and ToDictionary methods. These meth-
ods are used in the Mongo CRUDs classes to execute the prepared query.
We have created some Extension Methods 1 more specific than the stan-
dards LINQ ones, so our methods are called from Mongo classes. Then to
log update there was no other way to do it without calling the log function
manually. So we have extended (with another extension methods) the Mon-
goCollection class with a LoggedUpdate method that internally call the base
Update method but logging it.

1Extension Methods, an extension technique for C# explained in the Microsoft MSDN
official documentation [13]
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6.5.2 Apache Cassandra Implementation

To implement Cassandra provider we have chosen the FluentCassandra 1.2.2
after evaluating other libraries, as we exposed in Section 5.3.

FluentCassandra is not so stable and we had to overcome some problems
during the run of tests, like an abnormal use of memory for example. We had
to stop and restart tests sometimes to refresh the proper functioning. An-
other big problem was that using the same session to run multiple operations
have the effect of slowing down incrementally each new task. This was not
acceptable for our tests. So between each repetition of operation to log we
have inserted a callingto th Refresh method that is responsible to destroy
and recreate connection and reconfigure all that is needed.

CassandraSetupManager implements ISetupManager using the driver
class CassandraContext to configure the client parameters and establish
connection. The disposable object is the CassandraContext itself.

The Refresh method is implemented and it is necessary to log correct
values with Cassandra like we said before.

CassandraMinRCRUD, CassandraMaxRCRUD implements respec-
tively IMinRCRUD and IMaxRCRUD in a way that is very close to the theory.
The ekeys operation is provided by our CassandraSetupManager in the
EKeys method and, at lower lever, in GetCentralIndex method. In these
we have implemented the One-to-Several Column Families Indexes pattern
recommended in DataStax documentation explained in Section 5.3.2.

6.6 Summary

In this chapter we have presented the Evaluation Framework Architecture
and the database provider implementations for MongoDB and Cassandra.

We have also described the most interesting parts of code with that can
be checked in Appendice A.
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Discussion and Future Work

7.1 Summary of Work Done

NoSQL databases are certainly interesting, but choosing which one to use
is a challenge for the programmers that decide to develop a scalable appli-
cation. There are many differences between the available products. Some
products are mature, others constantly updated. Several different low level
data structures and indexes must be studied well before using them. There
is a need for improving the programmability and manageability of NoSQLs.
Definitely, the Marijà project would be an important introduction as a com-
mon interface for this world.

Starting from the Marijà assumption of single node independence, we
focused on the modeling of relations between entities in a NoSQL.

We have proposed two opposite models for serializing application level en-
tities connected through relations, MinR and MaxR. As we have extensively
explained the difference between these two models is the fact that MinR
keeps entities and relations between them in separate tables thus introduc-
ing an overhead whenever a relation has to be navigated from the entity. On
the contrary, MaxR flattens in a single tuple all entities connected through
some relations thus improving performance of query execution in spite of an
increased overhead of a updated operations. From database schema perspec-
tive the only change between the two presented models is the presence of the
denormalization of entities in relation tables. This has allowed us to define
a Common Schema between the two models.

As mentioned above, the two serialization models offer different advan-
tages and drawbacks. To support a user in selecting one of them, we have
presented a method for comparing them in a complete way from the per-
spective of the typical CRUD (Create, Read, Update, Delete) operations a
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user may want to perform. More specifically, we had to identify for each
operation what were the possible variants. Create, Update and Delete oper-
ations work only on one entity/relation at a time and in only one way. The
Read operation instead has several variants as it can work on one or more
objects, it can require the check of various predicates. Thus, we have distin-
guished between simple Read represented by the basic find by key operator
(defined in two flavors for entities, findE, and relations, findR) and complex
Read exploiting the expression of Relational Algebra. By studying in detail
all possible ways of formulating a Read operation in Relational Algebra, we
have seen that the comparison between MinR and MaxR can be reduced to
the analysis of two simpler operation, that are selectR for relation reading
and selectE for entity reading.

Having identified the main aspects to be compared, we have developed a
framework that has allowed us to execute comparison tests on two different
NoSQL databases, MongoDB and Cassandra. The analysis of the results of
the tests has allowed us to gather conclusions not only on the relative advan-
tages and disadvantages of MinR and MaxR, but also on the identification
of what we call Sharding Point. Both aspects are briefly summarized.

MinR vs MaxR Our main objective was to comparing MinR and MaxR
strategies with respect the properties of relations to store.

As regards the choice between MaxR and MinR, we have reached some
conclusions:

• By theoretically analyzing MaxR we have seen that it is the best suited
to read small amounts of data frequently. MinR instead is good to write
often maintaining consistency.

• Preliminary tests confirm this and show that MaxR is preferable for
sparse relations. MinR instead is the best when relations are full.

• Generally speaking, if we expect a lot of fluctuation in the relation
cardinality we have to choose MinR, that always remains constant.

• In case of non-mandatory (1,1) or (1,n) relations, MaxR usually wins.
Although if the relation cardinality become similar to the entity car-
dinalities, the performance of the two models are similar and for full
relations MinR is slightly better. For strongly related objects instead
MinR surely is the best, because in the MaxR there will be a too many
replicas.
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• MaxR is recommended with small entities because the MinR additional
operations overhead weighs too much. With large entities instead MinR
is preferable.

• We have verified that the increase in the cost of updating an entity is
linear and proportional to the number of replicas. Furthermore it is
not influenced by the cardinality of the entity set.

Sharding Point The secondary objective of the comparison was to find
useful guidelines to choose when to perform the sharding of a node. This
could be used for defining a partitioning strategy at design time and actuating
it at runtime.

What we have concluded is that imposing some constraint on the single
operations latency or on the time to reach consistency after an update, we
can obtain the maximum cardinality of any relations in a single node. So, we
have a sharding point. If we have to ensure a maximum latency constraint
on single read operation, we can launch the selectR Test 1: #E vs #R with
several values of #E (that imply several values of #R) and check when the
constraint is satisfied. Furthermore, if we have to ensure a time constraint
on consistency we can launch the updateE Test 2: #Replica grows with
the expected schema parameters and check (from the resulting graph) the
maximum number of replicas that is compatible with the constraint. Then
we know the maximum cardinality of R table on the single node that satisfy
us prerequisites. This is the Sharding Point.

7.2 Discussion

Findings when moving from theoretical analysis to practical testing
on NoSQL The results on the two implementations show that in some
cases the theoretical conclusions can be slightly different than the actual
ones. Our experience with MongoDB and Cassandra has allowed us to find
these deviations from the theory.

MongoDB has better overall performance than Cassandra, it looses only
in small entities write concerns. This is because Mongo uses an in-memory
data structure for reading and manipulation. However, to ensure durability
of a single update, Mongo must wait the flushing of memory and this cancels
the MinR advantage in updating an entity. So MaxR is a good choice also
with a frequent update of entities.

Cassandra instead has a big penalty in reading many columns. This
is because of the column-based organization. This penalize MaxR models.
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MinR is usually the best choice for Cassandra.
Cassandra, likely all Column-oriented NoSQLs, could be a good choice

only in a fully designed system where only the pre-engineered queries can be
performed.

Selecting the right NoSQL for Marijà On what concerns the Marijà
single node we have some suggestion on what NoSQL to use.

Initially we thought that the column-based is the data-model best suited
for Marijà. This is because Marijà starts from a set of queries to optimize,
and then we can build the correct access structures to optimize the readings.
Furthermore, the column-based are meant to be distributed across multiple
nodes.

However given the independence of individual nodes and given our practi-
cal experience, we can conclude that it is better to maximize performance on
nodes and manually manage the internode communication. From this point
of view the document-based NoSQL are the best option. They are scalable
and provide some automatic sharding techniques, but are designed to work
at their full potential on a single machine.

Experience in NoSQL programming We report here some of the NoSQL
usage experiences that we have obtained during this thesis.

For general-purpose use, we recommend the use of Document-based NoSQL.
They are more rich of features and easy to use. If you have to manage a very
high amount of data, then the Column-oriented NoSQL are more suited than
others. However, the structures for optimized data access must be designed
carefully, analyzing a priori how the database will be queried, otherwise the
performance decreases significantly. The key value are appropriate only for
simple scenarios, such as for a distributed cache or when there is no need to
use a particular data structure.

Before choosing what product to use you must also assess the infrastruc-
ture for which the database is designed. For example, MongoDB is designed
to maximize performance on single node. Cassandra instead presupposes to
be deployed over a multi-node network. Other products like Amazon Dy-
namoDB or Google BigTable are tied to their cloud infrastructure.

Furthermore, the documentation and API availability are quite heteroge-
neous.

We can also trace a comparison of MongoDB and Cassandra for what
concerns the developer vision:
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Mongo

• It is very simple to install and does not need any critical configuration.

• It is very simple to use. There are many concept similar to what we
can found in RDBMS or in Object-Oriented Programming Paradigm.

• It is very simple to design database schema, because of it does not need
any particular data structure to enhance performance.

• The documentation is very complete, with a complete reference and
several theoretical topics on architecture design.

• It is stable, during our experiments it has never crashed.

• Use of memory is very optimized. Even with several concurrent oper-
ations the central memory remain at stable level.

• Official driver for Microsoft .NET is very stable and complete.

• There are some third party administration tools.

• From API we can obtain statistical information on the document col-
lections (Object Count, Avarage Object Size, etc.).

Cassandra

• It is more complicated to install and configure.

• To start using Cassandra a deep analysis of related architectural design
patterns is needed.

• The documentation exist but it is not well organized, we have found
more information in related site than in the official one.

• It need indexing to ensure good reading performance, but the pattern
to use is well explained and they are simple to implement.

• It is Big Data oriented, there is more administration tools to manage
cluster then to manage data on single node. Cassandra CQL Shell has
some problematic with mixed case names and with Dynamic Column
Families (without fixed definition of columns).

• The project is under upgrade. Some new mechanism were introduced
and some features will be marked as deprecated.
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• An official driver for Microsoft .NET not exists, only the Thrift interface
and CQL binary protocol. The third party project are good but with
some lacks for what concern the complete implementation of Cassandra
mechanisms. FluentCassandra, that we have used, is aligned with the
last version of Cassandra, but it has some problem with memory and
connection management.

7.3 Future Work

As future works we plan to replicate our tests on an in-memory Key-Value
(Redis) on an machine with a large quantity of RAM, because it can be
maximize the single node performance.

Also we have to test a write-oriented Document-based database (CouchDB)
to see if write performance are comparable with the ones of Cassandra.

Then we plan to repeat the tests on different machines and find some
mathematical functions that describe the relationship between the charac-
teristics of used machines and the outcomes of the tests. This should be
useful for theoretical estimation, before real testing.

Finally, we have to enlarge tests on the Marijà query distributed system
to check if the assumption of single node independence is valid and if the final
performance are comparable with a specific database distributed solution.
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Appendix A

Evaluation Framework Code
Fragments

A.1 Introduction

A.2 Marijà Worker Interfaces

ISetupManager

public interface ISetupManager
{

bool IsMaxR { get ; s e t ; }

IDic t ionary<string , EntityMetadata> En t i t i e s { get ; s e t ; }
IDic t ionary<string , RelationMetadata> Re la t i ons { get ; s e t ; }

object GetRelId ( string r e l , ID ic t ionary<string , object> i d s ) ;
object CreateObject ( string colName , object id ,

IDic t ionary<string , object> a t t r s ) ;
void UpdateObjects ( string colName , IQuery query ,

IDic t ionary<string , object> toUpdate ) ;
void DeleteObject s ( string colName , IQuery query ) ;
object GetCo l l e c t i on ( string name ) ;
bool DatabaseExist ( string name , string u r l = null ) ;
void DropCol l ect ion ( string name ) ;
void DropDatabase ( ) ;

void Setup ( IEnumerable<RelationMetadata> r e l a t i o n s ,
params string [ ] e n t i t i e s ) ;

void Setup ( IEnumerable<RelationMetadata> r e l a t i o n s ,
IDic t ionary<string , IEnumerable<string>> e n t i t i e s ) ;

void SetupIndex ( string colName , params string [ ] keyNames ) ;
void SetupEntity ( string ent i ty , IEnumerable<string> a t t r s = null ,

bool? drop = null ) ;
void SetupRelat ion ( RelationMetadata r e l ,

IDic t ionary<string , IEnumerable<string>> e n t i t i e sA t t r s = null ) ;

object Star t ( string name , string u r l = null ) ;
object Refresh ( string name = null , string u r l = null ) ;
void I n i t ( ) ;
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void Stop ( ) ;

void CompactDB ( ) ;
}

ICRUD, IMinRCRUD, IMaxRCRUD

public interface IMinRCRUD : ICRUD { }
public interface IMaxRCRUD : ICRUD { }

public interface ICRUD
{

ISetupManager DB { get ; s e t ; }

object CreateEnt i ty ( string co l , object id ,
IDic t ionary<string , object> a t t r s ) ;

object DeleteEnt i ty ( string co l , object id ) ;
IRe l a t i on ReadEntity ( string co l , object id ) ;
object UpdateEntity ( string co l , object id ,

IDic t ionary<string , object> toUpdate , bool c on s i s t e n t = fa l se ) ;

object CreateRe lat ion ( string Rcol , IDic t ionary<string , object> i d s ) ;
object Dele t eRe la t i on ( string Rcol , IDic t ionary<string , object> i d s ) ;
IRe l a t i on ReadRelation ( string Rcol , IDic t ionary<string , object> i d s ) ;
object UpdateRelation ( string Rcol , IDic t ionary<string , object> ids ,

IDic t ionary<string , object> toUpdate ) ;

IRe l a t i on LoadEnt i t i e s ( string co l , IQuery query = null ) ;
IRe l a t i on LoadRelat ions ( string Rcol , IQuery query = null ) ;

IRe l a t i on Union ( IRe l a t i on re l 1 , IRe l a t i on r e l 2 ) ;
IRe l a t i on D i f f e r e n c e ( IRe l a t i on re l 1 , IRe l a t i on r e l 2 ) ;
IRe l a t i on Product ( IRe l a t i on re l 1 , IRe l a t i on r e l 2 ) ;
IRe l a t i on Pro j e c t ( IRe l a t i on r e l , IEnumerable<string> a t t r s ) ;
IRe l a t i on Rename( IRe l a t i on r e l , string asName ) ;
IRe l a t i on Rename( IRe l a t i on r e l , IDic t ionary<string , string> a t t r s ) ;
IRe l a t i on S e l e c t ( IRe l a t i on r e l , IQuery query ) ;

}

IRelation, IRelationRow

public interface IRe l a t i on
{

IL i s t<IRelationRow> Rows { get ; s e t ; }

void Add( IDict ionary<string , object> a t t r s ) ;
IRelationRow F i r s t ( ) ;

}

public interface IRelationRow : IEquatable<IRelationRow>
{

object this [ string a t t r ] { get ; }
IDic t ionary<string , object> Att r ibute s { get ; s e t ; }
IDic t ionary<string , object> Keys { get ; s e t ; }

}

A.3 MongoDB Implementation

MongoSetupManager

public class MongoSetupManager : Mar i j aSynte th i cTes te r . ISetupManager
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{
public bool ReinitDatabase { get ; s e t ; }
public ID i sposab l e ToDispose { get ; private s e t ; }
public MongoDatabase DB { get ; private s e t ; }

public bool IsMaxR { get ; s e t ; }

public IDic t ionary<string , EntityMetadata> En t i t i e s { get ; s e t ; }
public IDic t ionary<string , RelationMetadata> Re la t i ons { get ; s e t ; }

. . .

public object Star t ( string name , string u r l = null )
{

En t i t i e s = new Dict ionary<string , EntityMetadata >() ;
Re l a t i on s = new Dict ionary<string , RelationMetadata >() ;

MongoClient c l i e n t ;
i f ( u r l != null ) c l i e n t = new MongoClient ( u r l ) ;
else
{

c l i e n t = new MongoClient (new MongoCl ientSett ings ( )
{

MaxConnectionPoolSize = 1 ,
WaitQueueSize = 1

} ) ;
}

MongoServer mongo = c l i e n t . GetServer ( ) ;
mongo . Connect ( ) ;

DB = mongo . GetDatabase (name ) ;

ToDispose = mongo . RequestStart (DB) ;

return DB;
}

. . .

public void CompactDB( )
{

foreach ( var en t i t y in En t i t i e s . Keys )
{

i f (DB. Co l l e c t i o nEx i s t s ( en t i t y ) )
DB.RunCommand(new CommandDocument( ”compact” , e n t i t y ) ) ;

}
}

. . .

public void SetupEntity ( string ent i ty , IEnumerable<string> a t t r s = null ,
bool? drop = null )

{
i f ( ( drop ?? ReinitDatabase ) && DB. Co l l e c t i o nEx i s t s ( en t i t y ) )
{

DB. DropCol l ect ion ( en t i t y ) ;
}

i f ( !DB. Co l l e c t i o nEx i s t s ( en t i t y ) )
{

DB. Crea t eCo l l e c t i on ( ent i ty ,
MongoDB. Driver . Bu i lde r s . Co l l e c t i onOpt ions . SetAutoIndexId ( true ) ) ;

}
else
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{
DB.RunCommand(new CommandDocument( ”compact” , e n t i t y ) ) ;

}

i f ( ! En t i t i e s . ContainsKey ( en t i t y ) )
{

En t i t i e s .Add( ent i ty , new EntityMetadata ( en t i t y )
{

Co l l e c t i o n = DB. GetCo l l e c t i on ( en t i t y )
} ) ;

}
}

public void SetupRelat ion ( RelationMetadata r e l ,
IDic t ionary<string , IEnumerable<string>> e n t i t i e sA t t r s = null )

{
i f ( ! Re l a t i ons . ContainsKey ( r e l .Name) )
{

var c o l = DB. GetCo l l e c t i on ( r e l .Name ) ;

SetupEntity ( r e l .Name ) ;

foreach ( var e in r e l . En t i t i e s )
{

c o l . EnsureIndex ( e + ” i d ” ) ;
i f ( ! En t i t i e s [ e ] . Re l a t i on s . Contains ( r e l .Name) )

En t i t i e s [ e ] . Re l a t i on s .Add( r e l .Name ) ;
}

r e l . Co l l e c t i on = co l ;
Re l a t i on s .Add( r e l .Name, r e l ) ;

}
}

. . .

}

MongoMinRCRUD

public class MongoMinRCRUD : MinRCRUD, IMongoCRUD, IMinRCRUD
{
public MongoMinRCRUD( ISetupManager db)
{

base .DB = db ;
}

#reg ion Write

/// <summary>
/// Create (A)
///
/// f i n d (A)
/// i n s e r t (A)
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=” a t t r s ”>Ent i ty a t t r i b u t e s </param>
/// <returns>Created e n t i t y </returns>
public override object CreateEnt i ty ( string co l , object id ,

IDic t ionary<string , object> a t t r s )
{

return getE ( c o l ) . AsMongoCol ( ) . I n s e r t (DB. CreateObject ( co l , id , a t t r s ) ) ;
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}

/// <summary>
/// Dele te (A) :
///
/// a = f i n d (A)
/// t r a n s f e r
/// d e l e t e ( a )
/// foreach (R in {A}) {
/// R a = s e l e c t (R, R. Aid = @Aid)
/// foreach ( r in R a ) {
/// d e l e t e ( r )
/// }
/// }
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <returns>Operation r e s u l t : true</returns>
public override object DeleteEnt i ty ( string co l , object id )
{

var E = getE ( co l ) ;
foreach ( var R in E. Re la t i ons )
{

getR (R) . AsMongoCol ( ) . Remove(Query .EQ( co l + ” i d ” , id . ToString ( ) ) ) ;
}

return E. AsMongoCol ( ) . Remove(Query .EQ( ” i d ” , id . ToString ( ) ) ) ;
}

/// <summary>
/// Update (A) :
///
/// a = f i n d (A)
/// updateIndex (IX A)
/// update ( a )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=”toUpdate”>A t t r i b u t e s to update</param>
/// <param name=”c o n s i s t e n t”>Cons is tent wr i tes </param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateEntity ( string co l , object id ,

IDic t ionary<string , object> toUpdate , bool c on s i s t e n t = true )
{

var E = getE ( co l ) ;
var Ecol = E. AsMongoCol ( ) ;

var writeConcern = new WriteConcern ( )
{

W = 1 ,
Journal = false ,
FSync = true

} ;

return E. AsMongoCol ( )
. LoggedUpdate (Query .EQ( ” i d ” , id . ToString ( ) ) , Update . Combine (

toUpdate . S e l e c t ( a => Update . Set ( a .Key , a . Value . ToString ( ) ) ) ) ,
writeConcern ) ;

}

/// <summary>
/// Create (R) :
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///
/// foreach (X in {R}) {
/// i n s e r t (X)
/// }
/// s e l e c t (R, p )
/// t r a n s f e r
/// i n s e r t
/// t r a n s f e r
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Created r e l a t i o n </returns>
public override object CreateRe lat ion ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;
i f ( i d s . Count != 2 && R. Type != RelationType . Multi )

throw new Inva l idOperat ionExcept ion (
” only binary r e l a t i o n s can be c rea ted with c on s t r a i n t s ” ) ;

var r e l I d = DB. GetRelId ( Rcol , i d s ) ;

var e1 = id s . F i r s t ( ) ;
var e2 = id s . Last ( ) ;
switch (R. Type )
{

case RelationType . R 11 :
i f (R. AsMongoCol ( )

. Find (Query .Or(Query .EQ( e1 .Key + ” i d ” , e1 . Value . ToString ( ) ) ,
Query .EQ( e2 .Key + ” i d ” , e2 . Value . ToString ( ) ) ) ) . Any( )

)
{

throw new Inva l idOperat ionExcept ion (
”Re lat ion type con t r a i n t v i o l a t i o n ” ) ;

}
break ;

case RelationType . R 1N :
i f (R. AsMongoCol ( )

. Find (Query .EQ( e2 .Key + ” i d ” , e2 . Value . ToString ( ) ) ) . Any ( ) )
{

throw new Inva l idOperat ionExcept ion (
”Re lat ion type con t r a i n t v i o l a t i o n ” ) ;

}
break ;

case RelationType .R NM:
i f (R. AsMongoCol ( )

. Find (Query .And(Query .EQ( e1 .Key + ” i d ” , e1 . Value . ToString ( ) ) ,
Query .EQ( e2 .Key + ” i d ” , e2 . Value . ToString ( ) ) )

) . Any ( ) )
{

throw new Inva l idOperat ionExcept ion (
”Re lat ion type con t r a i n t v i o l a t i o n ” ) ;

}
break ;

default :
break ;

}

var r e l a t i o n = new BsonDocument ( ) . Add( ” i d ” , r e l I d . ToString ( ) ) ;
foreach ( var e in R. En t i t i e s )
{

string id = id s . ContainsKey ( e ) ? i d s [ e ] . ToString ( ) : string . Empty ;
i f ( string . IsNullOrEmpty ( id ) )

throw new System . ArgumentException (
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” i d s : e n t i t y not found in r e l a t i o n metadata” ) ;

i f ( ! getE ( e ) . AsMongoCol ( ) . Find (Query .EQ( ” i d ” , id ) ) . Any ( ) )
throw new Inva l idOperat ionExcept ion (

string . Format ( ”Entity {0} with key {1} not found . ” , e , id ) ) ;

r e l a t i o n = r e l a t i o n .Add( e + ” i d ” , id ) ;
}
return R. AsMongoCol ( ) . I n s e r t ( r e l a t i o n as BsonDocument ) ;

}

/// <summary>
/// Dele te (R) :
///
/// r = f i n d (R)
/// t r a n s f e r
/// updateIndex (IX R)
/// d e l e t e ( r )
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Operation r e s u l t : true</returns>
public override object Dele t eRe la t i on ( string Rcol ,

IDic t ionary<string , object> i d s )
{

object r e l I d = base .DB. GetRelId ( Rcol , i d s ) ;
return getR ( Rcol ) . AsMongoCol ( ) . Remove(Query .EQ( ” i d ” , r e l I d . ToString ( ) ) ) ;

}

/// <summary>
/// Update (R) :
///
/// f i n d (R)
/// updateIndex (IX R)
/// update (R)
/// t r a n s f e r
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <param name=”toUpdate”>Rela t ion a t t r i b u t e s to update</param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateRelation ( string Rcol ,

IDic t ionary<string , object> ids , IDic t ionary<string , object> toUpdate )
{

var r e l I d = DB. GetRelId ( Rcol , i d s ) ;

var toU = toUpdate .Where ( a => ! a . Key . EndsWith ( ” i d ” ) ) ;
i f ( toU . Count ( ) == 0)

return null ;

return getR ( Rcol ) . AsMongoCol ( )
. LoggedUpdate (Query .EQ( ” i d ” , r e l I d . ToString ( ) ) ,

Update . Combine ( toU . S e l e c t ( a => Update . Set ( a .Key , a . Value . ToString ( ) ) ) ) ) ;
}

#endreg ion

#reg i on Read

/// <summary>
/// Read(A) : f i n d by key
///
/// f i n d (A, Aid )
///
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/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e e n t i t y ( a u t o r e l a t i o n )</ returns>
public override IRe l a t i on ReadEntity ( string co l , object id )
{

var minr = new MinR ( ) ;
var E = getE ( co l ) ;
var doc = E. AsMongoCol ( ) . FindOneById ( id . ToString ( ) ) ;
i f ( doc == null ) return new MinR ( ) ;
var i dS t r i n g = id . ToString ( ) ;

i f (DB. Re la t i on s . ContainsKey ( c o l ) )
{

minr .Add( doc .ToRow ( ) ) ;
}
else
{

minr . En t i t i e s .Add(E.Name, new Dict ionary<string ,
ID ic t ionary<string , object>> { { i dSt r ing , doc .ToRow( ) } } ) ;

minr .Add(new Dict ionary<string , object> { { E.Name + ” i d ” , i dS t r i n g } } ) ;
}
return minr ;

}

/// <summary>
/// Read(R) : f i n d by key
///
/// foreach ( var x in Rids ) {
/// f i n d ( x . e n t i t y , x . id )
/// t r a n s f e r
/// }
/// f i n d (R, Rids )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e r e l a t i o n </returns>
public override IRe l a t i on ReadRelation ( string Rcol , IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;
var e n t i t i e s = new Dict ionary<string , ID ic t ionary<string ,

ID ic t ionary<string , object>>>();

var ent i tyKeys = new Dict ionary<string , object >() ;
foreach ( var ename in R. En t i t i e s )
{

var id = id s . ContainsKey ( ename ) ? i d s [ ename ] . ToString ( ) : string . Empty ;
i f ( ! string . IsNullOrEmpty ( id ) )
{

e n t i t i e s .Add( ename , new Dict ionary<string ,
ID ic t ionary<string , object>>
{

{ id , getE ( ename ) . AsMongoCol ( ) . FindOneById ( id ) .ToRow( ) }
} ) ;

ent i tyKeys .Add(ename , id ) ;
}

}

var r e l = R. AsMongoCol ( ) . FindOneById (DB. GetRelId ( Rcol , i d s ) . ToString ( ) )
as BsonDocument ;

i f ( r e l == null )
return null ;
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return new MinR
{

Rows = new List<IRelationRow> { new MinRRow( e n t i t i e s )
{

Att r ibute s = r e l .ToRow( ) , Keys = ent i tyKeys }
} ,
En t i t i e s = e n t i t i e s

} ;
}

/// <summary>
/// Read(A) : query
///
/// s e l e c t (A, p )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”query”>Read pred ica te </param>
/// <returns>MaxR conta in ing the e n t i t i e s </returns>
public override IRe l a t i on LoadEnt i t i e s ( string co l , IQuery query = null )
{

var minr = new MinR ( ) ;
var E = getE ( co l ) ;
minr . En t i t i e s .Add( co l , new Dict ionary<string ,

ID ic t ionary<string , object>>());
foreach ( var e in E. AsMongoCol ( ) . Find (E. BuildMongoQuery ( query ) ) . ToList ( ) )
{

var id = e [ ” i d ” ] . AsStr ing ;
minr . En t i t i e s [E .Name ] . Add( id , e .ToRow ( ) ) ;
minr .Add(new Dict ionary<string , object> { { E.Name + ” i d ” , id } } ) ;

}
return minr ;

}

/// <summary>
/// Read(R) : query
///
/// rA = s e l e c t (A, p )
/// t r a n s f e r
/// s e l e c t (R, R. Aid IN rA . id )
/// t r a n s f e r
/// foreach ( var X in ({R}−A)) {
/// i d s = d i s t i n c t (kR)
/// foreach ( id in i d s ) {
/// f i n d (X, id )
/// }
/// t r a n s f e r
/// }
/// j o i n ()
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the r e l a t i o n s </returns>
public override IRe l a t i on LoadRelat ions ( string Rcol , IQuery query = null )
{

List<BsonDocument> Rs ;
IDic t ionary<string , ID ic t ionary<string , object>> As = null ;
var e n t i t i e s = new Dict ionary<string , ID ic t ionary<string ,

ID ic t ionary<string , object>>>();

var R = getR ( Rcol ) ;
var s imple = query as SimpleQuery ;
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i f ( s imple == null )
Rs = R. AsMongoCol ( ) . FindAll ( ) . ToList ( ) ;

else i f ( Rcol . Equals ( s imple . Entity ) )
Rs = R. AsMongoCol ( ) . Find (R. BuildMongoMinRQuery ( s imple ) ) . ToList ( ) ;

else
{

var A = getE ( s imple . Ent ity ) ;
As = A. AsMongoCol ( ) . Find (A. BuildMongoQuery ( s imple ) )

. ToDictionary ( r => ( r as BsonDocument ) [ ” i d ” ] . AsString ,
r => ( r as BsonDocument ) .ToRow ( ) ) ;

Rs = R. AsMongoCol ( ) . Find (Query . In (A.Name + ” i d ” ,
As . Keys . S e l e c t ( a => BsonValue . Create ( a ) ) . ToArray ( ) ) )

. ToList<BsonDocument>() ;

e n t i t i e s .Add(A.Name, As ) ;
}

foreach ( var Ecol in R. En t i t i e s )
{

// i f i t i s a l ready loaded ( i t i s the f i l t e r e d e n t i t y )
i f ( s imple != null && ( Ecol == simple . Ent ity && As != null ) )

continue ;

var i d s = Rs . S e l e c t ( r => r [ Ecol + ” i d ” ] ) . D i s t i n c t ( ) ;
var Es = getE ( Ecol ) . AsMongoCol ( ) . Find (Query . In ( ” i d ” , i d s ) )

. ToDictionary ( r => ( r as BsonDocument ) [ ” i d ” ] . AsString ,
r => ( r as BsonDocument ) .ToRow ( ) ) ;

e n t i t i e s .Add( Ecol , Es ) ;
}

var r e l a t i o n s = new List<IRelationRow >() ;
foreach ( var r e l in Rs)
{

var ents = R. En t i t i e s . ToDictionary ( e => e , e => r e l [ e + ” i d ” ] . AsStr ing as object ) ;
r e l a t i o n s .Add(new MinRRow( e n t i t i e s ) { Att r ibute s = r e l .ToRow( ) , Keys = ents } ) ;

}
return new MinR { Rows = r e l a t i o n s , En t i t i e s = e n t i t i e s } ;

}

#endreg ion
}

MongoMaxRCRUD

public class MongoMaxRCRUD : MaxRCRUD, IMongoCRUD, IMaxRCRUD
{
public MongoMaxRCRUD( ISetupManager db)
{

base .DB = db ;
}

#reg ion Write

/// <summary>
/// Create (A)
///
/// f i n d (A)
/// i n s e r t (A)
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=” a t t r s ”>Ent i ty a t t r i b u t e s </param>
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/// <returns>Created e n t i t y </returns>
public override object CreateEnt i ty ( string co l , object id ,

IDic t ionary<string , object> a t t r s )
{

return getE ( c o l ) . AsMongoCol ( ) . In s e r t<object>(DB. CreateObject ( co l , id , a t t r s ) ) ;
}

/// <summary>
/// Dele te (A) :
///
/// a = f i n d (A)
/// t r a n s f e r
/// d e l e t e ( a )
/// foreach (R in {A}) {
/// R a = s e l e c t (R, R. Aid = @Aid)
/// foreach ( r in R a ) {
/// d e l e t e ( r )
/// }
/// }
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <returns>Operation r e s u l t : true</returns>
public override object DeleteEnt i ty ( string co l , object id )
{

var e = getE ( c o l ) ;
foreach ( string cur rent in e . Re la t i on s )
{

getR ( cur rent ) . AsMongoCol ( )
. Remove(Query .EQ( co l + ” i d ” , id . ToString ( ) ) ) ;

}
return e . AsMongoCol ( ) . Remove(Query .EQ( ” i d ” , id . ToString ( ) ) ) ;

}

/// <summary>
/// Update (A) :
///
/// a = f i n d (A)
/// updateIndex (IX A)
/// update ( a )
/// t r a n s f e r
/// R a = s e l e c t (R, R. Aid = @Aid)
/// foreach (R in R a ) {
/// update (R)
/// t r a n s f e r
/// }
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=”toUpdate”>A t t r i b u t e s to update</param>
/// <param name=”c o n s i s t e n t”>Cons is tent wr i tes </param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateEntity ( string co l , object id ,

IDic t ionary<string , object> toUpdate , bool c on s i s t e n t = true )
{

var writeConcern = new WriteConcern ( )
{

W = 1 ,
Journal = false ,
FSync = true

} ;

var E = getE ( co l ) ;
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var r e s u l t = E. AsMongoCol ( )
. LoggedUpdate (Query .EQ( ” i d ” , id . ToString ( ) ) , Update . Combine (

toUpdate . S e l e c t ( a => Update . Set ( a .Key , a . Value . ToString ( ) ) ) ) ,
writeConcern ) ;

i f ( ! c o n s i s t e n t )
writeConcern = WriteConcern . Acknowledged ;

foreach ( string R in E. Re la t i ons )
{

getR (R) . AsMongoCol ( )
. LoggedUpdate (Query .EQ( co l + ” i d ” , id . ToString ( ) ) ,

Update . Combine ( toUpdate . S e l e c t ( a =>
Update . Set ( c o l + ” ” + a .Key , a . Value . ToString ( ) )

) ) , UpdateFlags . Multi ) ;
}
return r e s u l t ;

}

/// <summary>
/// Create (R) :
///
/// foreach (X in {R}) {
/// i n s e r t (X)
/// }
/// s e l e c t (R, p )
/// t r a n s f e r
/// i n s e r t
/// t r a n s f e r
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Created r e l a t i o n </returns>
public override object CreateRe lat ion ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;
i f ( i d s . Count != 2 && R. Type != RelationType . Multi )

throw new Inva l idOperat ionExcept ion (
” only binary r e l a t i o n s can be c rea ted with c on s t r a i n t s ” ) ;

var r e l I d = DB. GetRelId ( Rcol , i d s ) ;

var e1 = id s . F i r s t ( ) ;
var e2 = id s . Last ( ) ;
switch (R. Type )
{

case RelationType . R 11 :
i f (R. AsMongoCol ( )

. Find (Query .Or(Query .EQ( e1 .Key + ” i d ” , e1 . Value . ToString ( ) ) ,
Query .EQ( e2 .Key + ” i d ” , e2 . Value . ToString ( ) ) ) ) . Any( )

)
{

throw new Inva l idOperat ionExcept ion (
”Re lat ion type con t r a i n t v i o l a t i o n ” ) ;

}
break ;

case RelationType . R 1N :
i f (R. AsMongoCol ( )

. Find (Query .EQ( e2 .Key + ” i d ” , e2 . Value . ToString ( ) ) ) . Any ( ) )
{

throw new Inva l idOperat ionExcept ion (
”Re lat ion type con t r a i n t v i o l a t i o n ” ) ;

}
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break ;
case RelationType .R NM:

i f (R. AsMongoCol ( )
. Find (Query .And(Query .EQ( e1 .Key + ” i d ” , e1 . Value . ToString ( ) ) ,

Query .EQ( e2 .Key + ” i d ” , e2 . Value . ToString ( ) ) )
) . Any ( ) )

{
throw new Inva l idOperat ionExcept ion (

”Re lat ion type con t r a i n t v i o l a t i o n ” ) ;
}
break ;

default :
break ;

}

var r e l a t i o n = new BsonDocument ( ) . Add( ” i d ” , r e l I d . ToString ( ) ) ;
foreach ( var e in R. En t i t i e s )
{

string id = id s . ContainsKey ( e ) ? i d s [ e ] . ToString ( ) : string . Empty ;
i f ( string . IsNullOrEmpty ( id ) )

throw new System . ArgumentException (
” i d s : e n t i t y not found in r e l a t i o n metadata” ) ;

var doc = getE ( e ) . AsMongoCol ( ) . FindOneById ( id ) ;
i f ( doc == null )

throw new Inva l idOperat ionExcept ion (
string . Format ( ”Entity {0} with key {1} not found . ” , e , id ) ) ;

foreach ( var a t t r in doc )
{

r e l a t i o n = r e l a t i o n .Add( e + ” ” + a t t r .Name, a t t r . Value ) ;
}

}
return R. AsMongoCol ( ) . I n s e r t ( r e l a t i o n as BsonDocument ) ;

}

/// <summary>
/// Dele te (R) :
///
/// r = f i n d (R)
/// t r a n s f e r
/// updateIndex (IX R)
/// d e l e t e ( r )
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Operation r e s u l t : true</returns>
public override object Dele t eRe la t i on ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var r e l I d = DB. GetRelId ( Rcol , i d s ) ;
return getR ( Rcol ) . AsMongoCol ( ) . Remove(Query .EQ( ” i d ” , r e l I d . ToString ( ) ) ) ;

}

/// <summary>
/// Update (R) :
///
/// f i n d (R)
/// updateIndex (IX R)
/// update (R)
/// t r a n s f e r
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
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/// <param name=”toUpdate”>Rela t ion a t t r i b u t e s to update</param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateRelation ( string Rcol ,

IDic t ionary<string , object> ids , IDic t ionary<string , object> toUpdate )
{

var r e l I d = DB. GetRelId ( Rcol , i d s ) ;

var toU = toUpdate .Where ( a => ! a . Key . EndsWith ( ” i d ” ) ) ;
i f ( toU . Count ( ) == 0)

return null ;

return getR ( Rcol ) . AsMongoCol ( )
. LoggedUpdate (Query .EQ( ” i d ” , r e l I d . ToString ( ) ) , Update . Combine (

toU . S e l e c t ( a => Update . Set ( a .Key , a . Value . ToString ( ) ) ) ) ) ;
}

#endreg ion

#reg i on Read

/// <summary>
/// Read(A) : f i n d by key
///
/// f i n d (A, Aid )
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e e n t i t y ( a u t o r e l a t i o n )</ returns>
public override IRe l a t i on ReadEntity ( string co l , object id )
{

var doc = getE ( co l ) . AsMongoCol ( ) . FindOneById ( id . ToString ( ) ) ;
i f ( doc == null ) return new MaxR( ) ;
var maxr = new MaxR( co l ) ;
var p r e f i x = string . Empty ;
i f ( !DB. Re la t i on s . ContainsKey ( c o l ) ) p r e f i x = co l + ” ” ;
maxr .Add( doc .ToRow( p r e f i x ) ) ;
return maxr ;

}

/// <summary>
/// Read(R) : f i n d by key
///
/// f i n d (R, Rids )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e r e l a t i o n </returns>
public override IRe l a t i on ReadRelation ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;
var ent i tyKeys = new Dict ionary<string , object >() ;
var r e l = R. AsMongoCol ( )

. FindOneById (DB. GetRelId ( Rcol , i d s ) . ToString ( ) ) as BsonDocument ;

i f ( r e l == null )
return null ;

foreach ( var ename in R. En t i t i e s )
{

var id = id s . ContainsKey ( ename ) ? i d s [ ename ] . ToString ( ) : string . Empty ;
ent i tyKeys .Add(ename , id ) ;
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}
return new MaxR(R. En t i t i e s ) { Rows = new List<IRelationRow> {

new MaxRRow { Att r ibute s = r e l .ToRow( ) , Keys = ent i tyKeys } } } ;
}

/// <summary>
/// Read(A) : query
///
/// s e l e c t (A, p )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”query”>Read pred ica te </param>
/// <returns>MaxR conta in ing the e n t i t i e s </returns>
public override IRe l a t i on LoadEnt i t i e s ( string co l , IQuery query = null )
{

var maxr = new MaxR( co l ) ;
var E = getE ( co l ) ;
foreach ( var e in E. AsMongoCol ( ) . Find (E. BuildMongoQuery ( query ) ) . ToList ( ) )
{

maxr .Add( e .ToRow(E.Name + ” ” ) ) ;
}
return maxr ;

}

/// <summary>
/// Read(R) : query
///
/// rA = s e l e c t (A, p )
/// t r a n s f e r
/// s e l e c t (R, R. Aid IN rA . id )
/// t r a n s f e r
/// foreach ( var X in ({R}−A)) {
/// i d s = d i s t i n c t (kR)
/// foreach ( id in i d s ) {
/// f i n d (X, id )
/// }
/// t r a n s f e r
/// }
/// j o i n ()
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the r e l a t i o n s </returns>
public override IRe l a t i on LoadRelat ions ( string Rcol , IQuery query = null )
{

List<BsonDocument> Rs ;

var R = getR ( Rcol ) ;
i f ( query == null )

Rs = R. AsMongoCol ( ) . FindAll ( ) . ToList ( ) ;
else

Rs = R. AsMongoCol ( ) . Find (R. BuildMongoMaxRQuery ( query ) ) . ToList ( ) ;

var r e l a t i o n s = new List<IRelationRow >() ;
foreach ( var r e l in Rs)
{

var ents = R. En t i t i e s
. ToDictionary ( e => e , e => r e l [ e + ” i d ” ] . AsStr ing as object ) ;

r e l a t i o n s .Add(new MaxRRow { Att r ibute s = r e l .ToRow( ) , Keys = ents } ) ;
}
return new MaxR(R. En t i t i e s ) { Rows = r e l a t i o n s } ;
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}

#endreg ion
}

A.4 Apache Cassandra Implementation

CassandraSetupManager

public class CassandraSetupManager : Mar i jaSynte th i cTes te r . ISetupManager
{
internal string CentralIndexName = CentralIndexName ;

public string Keyspace { get ; s e t ; }

public bool ReinitDatabase { get ; s e t ; }
public ID i sposab l e ToDispose { get ; private s e t ; }
public CassandraContext DB { get ; private s e t ; }

public bool IsMaxR { get ; s e t ; }

public IDic t ionary<string , EntityMetadata> En t i t i e s { get ; s e t ; }
public IDic t ionary<string , RelationMetadata> Re la t i ons { get ; s e t ; }

. . .

public object Star t ( string name , string u r l = null )
{

Keyspace = name . ToLower ( ) ;
En t i t i e s = new Dict ionary<string , EntityMetadata >() ;
Re l a t i on s = new Dict ionary<string , RelationMetadata >() ;

return Refresh (name , u r l ) ;
}

public object Refresh ( string name = null , string u r l = null )
{

try
{

i f (DB != null && !DB. WasDisposed )
Stop ( ) ;

}
catch { }

DB = new CassandraContext (new Connect ionBui lder (
keyspace : (name ?? Keyspace ) . ToLower ( ) ,
host : u r l ?? ” l o c a l h o s t ” ,
connectionTimeout : 24∗60∗60 ,
poo l ing : true ,
s e r v e rP o l l i n g I n t e r v a l : 100 ,
connec t i onL i f e t ime : 24∗60∗60 ,
maxPoolSize : 1000000) ) ;

foreach ( var e in En t i t i e s . Values )
e . Co l l e c t i on = DB. GetColumnFamily ( e .Name ) ;

foreach ( var r in Re la t i ons . Values )
r . Co l l e c t i on = DB. GetColumnFamily ( r .Name ) ;

ToDispose = DB;

return DB;
}
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. . .

private void setupCentra l IndexTable ( )
{

i f ( ReinitDatabase && DB. ColumnFamilyExists ( CentralIndexName ) )
DB. DropColumnFamily ( CentralIndexName ) ;

i f ( !DB. ColumnFamilyExists ( CentralIndexName ) )
{

var c f = new CassandraColumnFamilySchema ( )
{

FamilyName = CentralIndexName ,
FamilyType = ColumnType . Super ,
KeyValueType = CassandraType . AsciiType ,
SuperColumnNameType = CassandraType . AsciiType ,
ColumnNameType = CassandraType . AsciiType ,
DefaultColumnValueType = CassandraType . Asci iType

} ;

DB. Keyspace . TryCreateColumnFamily ( c f ) ;
}

}

public void SetupEntity ( string ent i ty , IEnumerable<string> a t t r s = null ,
bool? drop = null )

{
i f ( ( drop ?? ReinitDatabase ) && DB. ColumnFamilyExists ( en t i t y ) )
DB. DropColumnFamily ( en t i t y ) ;

i f ( !DB. ColumnFamilyExists ( en t i t y ) )
{

var c f = new CfDef ( )
{

Keyspace = Keyspace ,
Name = ent i ty ,
Column type = ”Standard” ,
Comparator type = ”Asci iType ” ,
D e f a u l t v a l i d a t i o n c l a s s = ”Asci iType ” ,

} ;

c f . Column metadata = new List<ColumnDef>()
{

new ColumnDef ( ) { Name = ASCIIEncoding . ASCII . GetBytes ( ” i d x a l l ” ) ,
Va l i d a t i o n c l a s s = ”Asci iType ” , Index type = IndexType .KEYS }

} ;
i f ( a t t r s != null )
{

foreach ( var a t t r in a t t r s )
{

c f . Column metadata .Add(new ColumnDef ( ) {
Name = ASCIIEncoding . ASCII . GetBytes ( a t t r ) ,
Va l i d a t i o n c l a s s = ”Asci iType ”

} ) ;
}

}

DB. AddColumnFamily ( c f ) ;
//DB. Keyspace . TryCreateColumnFamily ( c f ) ;

}
// e l s e DB.RunCommand(new CommandDocument(” compact ” , e n t i t y ) ) ;

i f ( ! En t i t i e s . ContainsKey ( en t i t y ) )
#i f LogCo l l e c t i on

En t i t i e s .Add( ent i ty , new EntityMetadata ( en t i t y ) {
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Co l l e c t i o n = new LogMongoCollection (DB,
DB. GetColumnFamily ( en t i t y ) . S e t t i n g s

as MongoCol lect ionSett ings<BsonDocument>)
} ) ;

#else
En t i t i e s .Add( ent i ty , new EntityMetadata ( en t i t y ) {

Co l l e c t i o n = DB. GetColumnFamily ( en t i t y )
} ) ;

#end i f
}

public void SetupRelat ion ( RelationMetadata r e l ,
IDic t ionary<string , IEnumerable<string>> e n t i t i e sA t t r s = null )

{
i f ( ! Re l a t i ons . ContainsKey ( r e l .Name) )
{

#i f LogCo l l e c t i on
var c o l = new LogMongoCollection (DB,

DB. GetCo l l e c t i on ( r e l .Name ) . S e t t i n g s
as MongoCol lect ionSett ings<BsonDocument>);

#else
var c o l = DB. GetColumnFamily ( r e l .Name ) ;

#end i f

var a t t r s = new List<string >() ;

foreach ( var e in r e l . En t i t i e s )
{

a t t r s .Add( e + ” i d ” ) ;
i f ( IsMaxR)
{

i f ( e n t i t i e sA t t r s != null && en t i t i e sA t t r s . ContainsKey ( e ) )
a t t r s . AddRange( e n t i t i e sA t t r s [ e ] . S e l e c t ( a => e + ” ” + a ) ) ;

}
i f ( ! En t i t i e s [ e ] . Re l a t i on s . Contains ( r e l .Name) )

En t i t i e s [ e ] . Re l a t i on s .Add( r e l .Name ) ;
}

SetupEntity ( r e l .Name, a t t r s ) ;

r e l . Co l l e c t i o n = co l ;
Re l a t i on s .Add( r e l .Name, r e l ) ;

}
}

. . .

public IEnumerable<CassandraObject> EKeys ( string ent i ty , string r e l a t i on ,
params CassandraObject [ ] ent i tyKeys )

{
i f ( ent i tyKeys . Length == 0)

return new CassandraObject [ 0 ] ;

try
{

var r = GetCentralIndex ( )
. Get ( en t i t y + ” ” + r e l a t i o n )
. FetchColumns ( ent i tyKeys ) ;

return r . SelectMany ( s => s . Columns
. SelectMany (k => k . S e l e c t ( c => c . ColumnName) )

) . ToList ( ) . D i s t i n c t ( ) ;
}
catch
{

return new CassandraObject [ 0 ] ;
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}
}

public void AddToEKeys( string ent i ty , string r e l a t i on ,
CassandraObject ent i ty Id , CassandraObject r e l a t i o n I d )

{
GetCentralIndex ( )

. InsertColumn ( en t i t y + ” ” + r e l a t i on , ent i ty Id , r e l a t i on Id , new Byte ( ) ) ;
}

public void RemoveFromEKeys( string ent i ty , string r e l a t i on ,
CassandraObject ent i ty Id , CassandraObject r e l a t i o n I d )

{
try
{

GetCentralIndex ( )
. RemoveColumn( en t i t y + ” ” + r e l a t i on , ent i ty Id , r e l a t i o n I d ) ;

}
catch
{
}

}

. . .

public IEnumerable<object> ExecuteCassandraQuery ( CassandraColumnFamily cf ,
IQuery query )

{
var s imple = query as SimpleQuery ;
i f ( s imple != null )
{

var a t t r = s imple . Attr ;
i f ( a t t r == ” i d ” )
{

// Primary keys p r e d i c a t e

switch ( s imple . Type )
{

case QueryType .EQ:
return c f . Get ( s imple . Value ) . ToList ( ) ;

case QueryType .NE:
return c f . Get ( ) . ToList ( ) . Where ( r =>

r . Key . GetValue<AsciiType >() . ToString ( ) != s imple . Value ) ;

case QueryType .GT:
return c f . Get ( ) . StartWithKey ( s imple . Value ) . ToList ( )

. SkipWhile ( r =>
r . Key . GetValue<AsciiType >() . ToString ( ) == simple . Value ) ;

case QueryType .GTE:
return c f . Get ( ) . StartWithKey ( s imple . Value ) . ToList ( ) ;

case QueryType .LT:
return c f . Get ( ) . TakeUntilKey ( s imple . Value ) . ToList ( ) ;

case QueryType .LTE:
return c f . Get ( ) . TakeUntilKey ( s imple . Value ) . ToList ( )

. TakeWhile ( r =>
r . Key . GetValue<AsciiType >() . ToString ( ) != s imple . Value ) ;

default : return new FluentColumnFamily [ 0 ] ;
}

}
else i f ( a t t r == simple . Entity + ” i d ” )
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{
// Ent i ty Ids case : we have to query EKeys

IEnumerable<CassandraObject> keys ;
switch ( s imple . Type )
{

case QueryType .EQ:
keys = EKeys ( s imple . Entity , c f . FamilyName , s imple . Value ) ;
break ;

case QueryType .NE:
keys = GetCentralIndex ( )

. Get ( s imple . Ent ity + ” ” + c f . FamilyName)

. ToList ( ) . F i r s t ( )

. Columns .Where ( s => s . ColumnName != s imple . Value )

. SelectMany ( s => s . Columns . S e l e c t ( c => c . ColumnName) )

. D i s t i n c t ( ) ;
break ;

case QueryType .GT:
keys = GetCentralIndex ( )

. Get ( s imple . Ent ity + ” ” + c f . FamilyName)

. TakeUntilColumn ( s imple . Value ) . ToList ( )

. SelectMany ( s => s . Columns . S e l e c t ( c => c . ColumnName) )

. D i s t i n c t ( ) ;
break ;

case QueryType .GTE:
keys = GetCentralIndex ( )

. Get ( s imple . Ent ity + ” ” + c f . FamilyName)

. TakeUntilColumn ( s imple . Value ) . ToList ( )

. SelectMany ( s => s . Columns . S e l e c t ( c => c . ColumnName) )

. D i s t i n c t ( ) ;
break ;

case QueryType .LT:
keys = GetCentralIndex ( )

. Get ( s imple . Ent ity + ” ” + c f . FamilyName)

. TakeUntilColumn ( s imple . Value ) . ToList ( )

. SelectMany ( s => s . Columns . S e l e c t ( c => c . ColumnName) )

. D i s t i n c t ( ) ;
break ;

case QueryType .LTE:
keys = GetCentralIndex ( )

. Get ( s imple . Ent ity + ” ” + c f . FamilyName)

. TakeUntilColumn ( s imple . Value ) . ToList ( )

. SelectMany ( s => s . Columns . S e l e c t ( c => c . ColumnName) )

. D i s t i n c t ( ) ;
break ;

default : return new FluentColumnFamily [ 0 ] ;
}
i f ( keys . Count ( ) == 0) return new FluentColumnFamily [ 0 ] ;
return c f . Get ( keys . ToArray ( ) ) . ToList ( ) ;

}

// Simple a t t r i b u t e s case : Scan

Func<FluentColumnFamily , bool> expr = null ;

switch ( s imple . Type )
{

case QueryType .EQ:
expr = f => f . Columns . Count != 0 && f [ a t t r ] != null &&
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f [ a t t r ] . GetValue<AsciiType >() . ToString ( )
. CompareTo( s imple . Value ) == 0 ;

break ;

case QueryType .NE:
expr = f => f . Columns . Count != 0 && f [ a t t r ] != null &&

f [ a t t r ] . GetValue<AsciiType >() . ToString ( )
. CompareTo( s imple . Value ) != 0 ;

break ;

case QueryType .GT:
expr = f => f . Columns . Count != 0 && f [ a t t r ] != null &&

f [ a t t r ] . GetValue<AsciiType >() . ToString ( )
. CompareTo( s imple . Value ) > 0 ;

break ;

case QueryType .GTE:
expr = f => f . Columns . Count != 0 && f [ a t t r ] != null &&

f [ a t t r ] . GetValue<AsciiType >() . ToString ( )
. CompareTo( s imple . Value ) >= 0 ;

break ;

case QueryType .LT:
expr = f => f . Columns . Count != 0 && f [ a t t r ] != null &&

f [ a t t r ] . GetValue<AsciiType >() . ToString ( )
. CompareTo( s imple . Value ) < 0 ;

break ;

case QueryType .LTE:
expr = f => f . Columns . Count != 0 && f [ a t t r ] != null &&

f [ a t t r ] . GetValue<AsciiType >() . ToString ( )
. CompareTo( s imple . Value ) <= 0 ;

break ;

default : return new FluentColumnFamily [ 0 ] ;
}

return c f . LoggedAndPagedExecuteQuery ( expr ) ;
}

// Fixed Pred ica te s

var f ixedQ = query as FixedQuery ;
i f ( f ixedQ != null )
{

switch ( f ixedQ . Type )
{

case FixedQueryType .ALL:
return DB. ExecuteQuery ( ”SELECT ∗ FROM ” + fixedQ .Name ) ;

case FixedQueryType .NONE:
return new FluentColumnFamily [ 0 ] ;

default : return new FluentColumnFamily [ 0 ] ;
}

}
return new FluentColumnFamily [ 0 ] ;

}
}

CassandraMinRCRUD

public class CassandraMinRCRUD : MinRCRUD, ICassandraCRUD , IMinRCRUD, ICRUD
{
public CassandraSetupManager CassandraDB {

get { return DB as CassandraSetupManager ; } }
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public CassandraMinRCRUD( ISetupManager db)
{

DB = db ;
}

#reg ion Write

/// <summary>
/// Create (A)
///
/// f i n d (A)
/// i n s e r t (A)
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=” a t t r s ”>Ent i ty a t t r i b u t e s </param>
/// <returns>Created e n t i t y </returns>
public override object CreateEnt i ty ( string co l , object id ,

IDic t ionary<string , object> a t t r s )
{

var e = getE ( c o l ) . AsColumnFamily ( ) . CreateRecord ( id . ToString ( ) ) ;
foreach ( var a t t r in a t t r s )

e [ a t t r . Key ] = a t t r . Value . ToString ( ) ;

e [ ” i d x a l l ” ] = 0 ;

CassandraDB .DB. Attach ( e ) ;
CassandraDB .DB. SaveChanges ( ) ;

return e ;
}

/// <summary>
/// Dele te (A) :
///
/// a = f i n d (A)
/// t r a n s f e r
/// d e l e t e ( a )
/// foreach (R in {A}) {
/// R a = s e l e c t (R, R. Aid = @Aid)
/// foreach ( r in R a ) {
/// d e l e t e ( r )
/// }
/// }
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <returns>Operation r e s u l t : true</returns>
public override object DeleteEnt i ty ( string co l , object id )
{

var Ecol = getE ( c o l ) ;
foreach ( var R in Ecol . Re l a t i on s )
{

var r = getR (R) . AsColumnFamily ( ) ;
var keys = CassandraDB . EKeys ( co l , R, id . ToString ( ) ) ;
foreach ( var key in keys )
{

r . RemoveKey( key ) ;
}
CassandraDB .RemoveFromEKeys( co l , R, id . ToString ( ) ) ;

}
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Ecol . AsColumnFamily ( ) . RemoveKey( id . ToString ( ) ) ;
return true ;

}

/// <summary>
/// Update (A) :
///
/// a = f i n d (A)
/// updateIndex (IX A)
/// update ( a )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=”toUpdate”>A t t r i b u t e s to update</param>
/// <param name=”c o n s i s t e n t”>Cons is tent wr i tes </param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateEntity ( string co l , object id ,

IDic t ionary<string , object> toUpdate , bool c on s i s t e n t = true )
{

var E = getE ( co l ) ;
var Ecol = E. AsColumnFamily ( ) ;
var r e c = Ecol . Get ( id . ToString ( ) ) . F i r s t ( ) ;

update ( rec , toUpdate ) ;

Ecol . LoggedUpdate ( r ec ) ;
//CassandraDB .DB. Attach ( rec ) ;
//CassandraDB .DB. LoggedSaveChanges ( c o l ) ;

return true ;
}

/// <summary>
/// Create (R) :
///
/// foreach (X in {R}) {
/// i n s e r t (X)
/// }
/// s e l e c t (R, p )
/// t r a n s f e r
/// i n s e r t
/// t r a n s f e r
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Created r e l a t i o n </returns>
public override object CreateRe lat ion ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;

i f ( i d s . Count != 2 && R. Type != RelationType . Multi )
throw new Inva l idOperat ionExcept ion (

” only binary r e l a t i o n s can be c rea ted with c on s t r a i n t s ” ) ;

var id = DB. GetRelId ( Rcol , i d s ) ;

var e1 = id s . F i r s t ( ) ;
var e2 = id s . Last ( ) ;
switch (R. Type )
{

case RelationType . R 11 :
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i f (CassandraDB . EKeys ( e1 .Key , Rcol , e1 . Value . ToString ( ) ) . Any( ) | |
CassandraDB . EKeys ( e2 .Key , Rcol , e2 . Value . ToString ( ) ) . Any ( ) )
throw new Inva l idOperat ionExcept ion (

”Re lat ion type c on s t r a i n t v i o l a t i o n ” ) ;
break ;

case RelationType . R 1N :
i f (CassandraDB . EKeys ( e2 .Key , Rcol , e2 . Value . ToString ( ) ) . Any ( ) )

throw new Inva l idOperat ionExcept ion (
”Re lat ion type c on s t r a i n t v i o l a t i o n ” ) ;

break ;
case RelationType .R NM:

i f (R. AsColumnFamily ( ) . Get ( id . ToString ( ) ) . CountColumns ( ) != 0)
throw new Inva l idOperat ionExcept ion (

”Re lat ion type c on s t r a i n t v i o l a t i o n ” ) ;
break ;

default :
break ;

}

var r e l a t i o n = R. AsColumnFamily ( ) . CreateRecord ( id . ToString ( ) ) ;
foreach ( var e in R. En t i t i e s )
{

var eId = id s . ContainsKey ( e ) ? i d s [ e ] . ToString ( ) : string . Empty ;
i f ( string . IsNullOrEmpty ( eId ) )

throw new ArgumentException (
” i d s : e n t i t y not found in r e l a t i o n metadata” ) ;

var eDoc = getE ( e ) . AsColumnFamily ( ) . Get ( eId . ToString ( ) ) . F i r s t ( ) ;
i f ( eDoc . Columns . Count == 0)

throw new Inva l idOperat ionExcept ion ( string . Format (
”Entity {0} with key {1} not found . ” , e , eId ) ) ;

r e l a t i o n [ e + ” i d ” ] = eDoc .Key ;

CassandraDB .AddToEKeys( e , Rcol , eId , id . ToString ( ) ) ;
}

r e l a t i o n [ ” i d x a l l ” ] = 0 ;

CassandraDB .DB. Attach ( r e l a t i o n ) ;
CassandraDB .DB. SaveChanges ( ) ;

return r e l a t i o n ;
}

/// <summary>
/// Dele te (R) :
///
/// r = f i n d (R)
/// t r a n s f e r
/// updateIndex (IX R)
/// d e l e t e ( r )
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Operation r e s u l t : true</returns>
public override object Dele t eRe la t i on ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var id = DB. GetRelId ( Rcol , i d s ) ;
getR ( Rcol ) . AsColumnFamily ( ) . RemoveKey( id . ToString ( ) ) ;

foreach ( var E in i d s )
CassandraDB .RemoveFromEKeys(E.Key , Rcol , E . Value . ToString ( ) ,
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id . ToString ( ) ) ;

return true ;
}

/// <summary>
/// Update (R) :
///
/// f i n d (R)
/// updateIndex (IX R)
/// update (R)
/// t r a n s f e r
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <param name=”toUpdate”>Rela t ion a t t r i b u t e s to update</param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateRelation ( string Rcol ,

IDic t ionary<string , object> ids , IDic t ionary<string , object> toUpdate )
{

var id = DB. GetRelId ( Rcol , i d s ) ;

var r e c = getR ( Rcol ) . AsColumnFamily ( ) . Get ( id . ToString ( ) ) . F i r s t ( ) ;
i f ( r e c . Columns . Count == 0)

return fa l se ;

var toU = toUpdate .Where ( a => ! a . Key . EndsWith ( ” i d ” ) ) ;
i f ( toU . Count ( ) == 0)

return true ;

update ( rec , toU ) ;

CassandraDB .DB. Attach ( r ec ) ;
CassandraDB .DB. SaveChanges ( ) ;

return true ;
}

#endreg ion

#reg i on Read

/// <summary>
/// Read(A) : f i n d by key
///
/// f i n d (A, Aid )
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e e n t i t y ( a u t o r e l a t i o n )</ returns>
public override IRe l a t i on ReadEntity ( string co l , object id )
{

var minr = new MinR ( ) ;
var E = getE ( co l ) ;
var doc = E. AsColumnFamily ( ) . GetSing le ( id . ToString ( ) , null , null ) ;
i f ( doc . Columns . Count == 0) return new MinR ( ) ;
var i dS t r i n g = id . ToString ( ) ;

i f (DB. Re la t i on s . ContainsKey ( c o l ) )
{

minr .Add( doc .ToRow ( ) ) ;
}
else
{
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minr . En t i t i e s .Add(E.Name,
new Dict ionary<string , ID ic t ionary<string , object>> {
{ i dSt r ing , doc .ToRow( ) }

} ) ;
minr .Add(new Dict ionary<string , object> { { E.Name + ” i d ” , i dS t r i n g } } ) ;

}
return minr ;

}

/// <summary>
/// Read(R) : f i n d by key
///
/// foreach ( var x in Rids ) {
/// f i n d ( x . e n t i t y , x . id )
/// t r a n s f e r
/// }
/// f i n d (R, Rids )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e r e l a t i o n </returns>
public override IRe l a t i on ReadRelation ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;
var e n t i t i e s = new Dict ionary<string ,

ID ic t ionary<string , ID ic t ionary<string , object>>>();

var ent i tyKeys = new Dict ionary<string , object >() ;
foreach ( var ename in R. En t i t i e s )
{

var id = id s . ContainsKey ( ename ) ? i d s [ ename ] . ToString ( ) : string . Empty ;
i f ( ! string . IsNullOrEmpty ( id ) )

e n t i t i e s .Add( ename ,
new Dict ionary<string , ID ic t ionary<string , object>> {
{

id ,
getE ( ename ) . AsColumnFamily ( )

. GetSing le ( id , null , null ) .ToRow( )
} } ) ;

ent i tyKeys .Add(ename , id ) ;
}
var r e l = R. AsColumnFamily ( )

. GetSing le (DB. GetRelId ( Rcol , i d s ) . ToString ( ) , null , null ) ;
i f ( r e l == null ) return null ;
return new MinR
{

Rows = new List<IRelationRow> { new MinRRow( e n t i t i e s ) {
Att r ibute s = r e l .ToRow( ) , Keys = ent i tyKeys }

} ,
En t i t i e s = e n t i t i e s

} ;
}

/// <summary>
/// Read(A) : query
///
/// s e l e c t (A, p )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”query”>Read pred ica te </param>
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/// <returns>MaxR conta in ing the e n t i t i e s </returns>
public override IRe l a t i on LoadEnt i t i e s ( string co l , IQuery query = null )
{

var minr = new MinR ( ) ;
var E = getE ( co l ) ;
minr . En t i t i e s .Add( co l , new Dict ionary<string , ID ic t ionary<string , object>>());

IEnumerable Es ;

i f ( query == null )
Es = E. ExecuteCassandraQuery ( FixedQuery . Al l ( c o l ) , CassandraDB ) ;

else
Es = E. ExecuteCassandraQuery ( query , CassandraDB ) ;

foreach ( var row in Es )
{

var e = new CassandraRow ( row ) ;
var id = e .Key . GetValue<AsciiType >() . ToString ( ) ;
minr . En t i t i e s [E .Name ] . Add( id , e .ToRow ( ) ) ;
minr .Add(new Dict ionary<string , object> { { E.Name + ” i d ” , id } } ) ;

}
return minr ;

}

/// <summary>
/// Read(R) : query
///
/// rA = s e l e c t (A, p )
/// t r a n s f e r
/// s e l e c t (R, R. Aid IN rA . id )
/// t r a n s f e r
/// foreach ( var X in ({R}−A)) {
/// i d s = d i s t i n c t (kR)
/// foreach ( id in i d s ) {
/// f i n d (X, id )
/// }
/// t r a n s f e r
/// }
/// j o i n ()
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the r e l a t i o n s </returns>
public override IRe l a t i on LoadRelat ions ( string Rcol , IQuery query = null )
{

IEnumerable<object> Rs , As = null ;
// IDict ionary<s t r i n g , IDict ionary<s t r i n g , o b j e c t>> As = n u l l ;
var e n t i t i e s = new Dict ionary<string ,

ID ic t ionary<string , ID ic t ionary<string , object>>>();

var R = getR ( Rcol ) ;
var s imple = query as SimpleQuery ;
i f ( s imple == null )
{

Rs = R. ExecuteCassandraMinRQuery ( query ?? FixedQuery . Al l ( Rcol ) ,
CassandraDB ) ;

}
else i f ( Rcol . Equals ( s imple . Entity ) )

Rs = R. ExecuteCassandraMinRQuery ( query , CassandraDB ) ;
else
{

As = getE ( s imple . Ent ity ) . ExecuteCassandraQuery ( query , CassandraDB ) ;
CassandraObject [ ] keys = new CassandraObject [ 0 ] ;
i f (As . Count ( ) != 0)
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{
keys = CassandraDB . EKeys ( s imple . Entity , Rcol , As . ToCassandraKeys ( ) )

. ToArray ( ) ;
}
Rs = LogExtensions . Log<CassandraColumnFamily , IEnumerable<object>>(

R. AsColumnFamily ( ) , source =>
{

i f ( keys . Length == 0)
return new object [ 0 ] ;

// return source . Get ( keys ) . ToList ( ) ;
return source . PagedGetKeys ( keys ) . ToList ( ) ;

} , new ExpectedCassandraSta t i s t i c s ( Rcol ) , r e t => keys . Length ) ;

i f (As . Count ( ) != 0)
e n t i t i e s .Add( s imple . Entity , As . ToCassandraDictionary ( ) ) ;

}

foreach ( var Ecol in R. En t i t i e s )
{

// se l ’ ho g i à c a r i c a t a prima ( era q u e l l a da f i l t r a r e )
i f ( s imple != null && ( Ecol == simple . Ent ity && As != null ) )

continue ;

var Es = LogExtensions . Log<CassandraColumnFamily ,
IEnumerable<FluentColumnFamily>>(getE ( Ecol ) . AsColumnFamily ( ) ,
source =>
{

i f (Rs . Count ( ) == 0)
return new FluentColumnFamily [ 0 ] ;

var i d s = Rs . ToCassandraRow ( ) . S e l e c t ( r => r [ Ecol + ” i d ” ] )
. D i s t i n c t ( ) ;

return source . PagedGetKeys ( i d s . ToArray ( ) ) ;
} , new ExpectedCassandraSta t i s t i c s ( Ecol ) , r e t => r e t . Count ( ) ) ;

i f (Es . Count ( ) != 0)
e n t i t i e s .Add( Ecol , Es . ToCassandraDictionary ( ) ) ;

}

i f (Rs . Count ( ) == 0) return new MinR ( ) ;

var r e l a t i o n s = new List<IRelationRow >() ;
foreach ( var row in Rs)
{

var r e l = new CassandraRow ( row ) ;
var ents = R. En t i t i e s

. ToDictionary ( e => e , e => r e l [ e + ” i d ” ] . GetValue ( ) ) ;
r e l a t i o n s .Add(new MinRRow( e n t i t i e s ) {

Att r ibute s = r e l .ToRow( ) ,
Keys = ents

} ) ;
}
return new MinR { Rows = r e l a t i o n s , En t i t i e s = e n t i t i e s } ;

}

#endreg ion

#reg i on p r i v a t e s

private stat ic void update ( FluentColumnFamily rec ,
IEnumerable<KeyValuePair<string , object>> toUpdate )

{
foreach ( var a t t r in toUpdate )
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r e c [ a t t r . Key ] = a t t r . Value . ToString ( ) ;
}

#endreg ion
}

CassandraMaxRCRUD

public class CassandraMaxRCRUD : MaxRCRUD, ICassandraCRUD , IMaxRCRUD, ICRUD
{
public CassandraSetupManager CassandraDB {

get { return DB as CassandraSetupManager ; }
}

public CassandraMaxRCRUD( ISetupManager db)
{

DB = db ;
}

#reg ion Write

/// <summary>
/// Create (A)
///
/// f i n d (A)
/// i n s e r t (A)
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=” a t t r s ”>Ent i ty a t t r i b u t e s </param>
/// <returns>Created e n t i t y </returns>
public override object CreateEnt i ty ( string co l , object id ,

IDic t ionary<string , object> a t t r s )
{

var e = getE ( c o l ) . AsColumnFamily ( ) . CreateRecord ( id . ToString ( ) ) ;
foreach ( var a t t r in a t t r s )

e [ a t t r . Key ] = a t t r . Value . ToString ( ) ;

e [ ” i d x a l l ” ] = 0 ;

CassandraDB .DB. Attach ( e ) ;
CassandraDB .DB. SaveChanges ( ) ;

return e ;
}

/// <summary>
/// Dele te (A) :
///
/// a = f i n d (A)
/// t r a n s f e r
/// d e l e t e ( a )
/// foreach (R in {A}) {
/// R a = s e l e c t (R, R. Aid = @Aid)
/// foreach ( r in R a ) {
/// d e l e t e ( r )
/// }
/// }
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <returns>Operation r e s u l t : true</returns>
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public override object DeleteEnt i ty ( string co l , object id )
{

var Ecol = getE ( c o l ) ;
foreach ( var R in Ecol . Re l a t i on s )
{

var r = getR (R) . AsColumnFamily ( ) ;
var keys = CassandraDB . EKeys ( co l , R, id . ToString ( ) ) ;
foreach ( var key in keys )
{

r . RemoveKey( key ) ;
}
CassandraDB .RemoveFromEKeys( co l , R, id . ToString ( ) ) ;

}

Ecol . AsColumnFamily ( ) . RemoveKey( id . ToString ( ) ) ;
return true ;

}

/// <summary>
/// Update (A) :
///
/// a = f i n d (A)
/// updateIndex (IX A)
/// update ( a )
/// t r a n s f e r
/// R a = s e l e c t (R, R. Aid = @Aid)
/// foreach (R in R a ) {
/// update (R)
/// t r a n s f e r
/// }
///
/// </summary>
/// <param name=”c o l”>C o l l e c t i o n name</param>
/// <param name=”id”>Ent i ty id</param>
/// <param name=”toUpdate”>A t t r i b u t e s to update</param>
/// <param name=”c o n s i s t e n t”>Cons is tent wr i tes </param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateEntity ( string co l , object id ,

IDic t ionary<string , object> toUpdate , bool c on s i s t e n t = true )
{

var E = getE ( co l ) ;
var Ecol = E. AsColumnFamily ( ) ;
var r e c = Ecol . Get ( id . ToString ( ) ) . F i r s t ( ) ;

update ( rec , toUpdate ) ;

Ecol . LoggedUpdate ( r ec ) ;
//CassandraDB .DB. Attach ( rec ) ;
//CassandraDB .DB. LoggedSaveChanges ( c o l ) ;

foreach ( var R in E. Re la t i ons )
{

var Rcol = getR (R) . AsColumnFamily ( ) ;
var keys = CassandraDB . EKeys ( co l , R, id . ToString ( ) ) . ToArray ( ) ;
return LogExtensions

. Log<CassandraColumnFamily , bool>(Rcol , source =>
{

i f ( keys . Length == 0)
return true ;

foreach ( var r e l in source . PagedGetKeys ( keys ) )
{

update ( r e l , toUpdate
. ToDictionary (u => c o l + ” ” + u .Key , u => u . Value ) ) ;
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CassandraDB .DB. Attach ( r e l ) ;
}

CassandraDB .DB. SaveChanges ( ) ;
return true ;

} , new ExpectedCassandraSta t i s t i c s (R) , r e t => keys . Length ) ;
}

return true ;
}

/// <summary>
/// Create (R) :
///
/// foreach (X in {R}) {
/// i n s e r t (X)
/// }
/// s e l e c t (R, p )
/// t r a n s f e r
/// i n s e r t
/// t r a n s f e r
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Created r e l a t i o n </returns>
public override object CreateRe lat ion ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;

i f ( i d s . Count != 2 && R. Type != RelationType . Multi )
throw new Inva l idOperat ionExcept ion (

” only binary r e l a t i o n s can be c rea ted with c on s t r a i n t s ” ) ;

var id = DB. GetRelId ( Rcol , i d s ) ;

var e1 = id s . F i r s t ( ) ;
var e2 = id s . Last ( ) ;
switch (R. Type )
{

case RelationType . R 11 :
i f (CassandraDB . EKeys ( e1 .Key , Rcol , e1 . Value . ToString ( ) ) . Any( ) | |

CassandraDB . EKeys ( e2 .Key , Rcol , e2 . Value . ToString ( ) ) . Any ( ) )
throw new Inva l idOperat ionExcept ion (

”Re lat ion type c on s t r a i n t v i o l a t i o n ” ) ;
break ;

case RelationType . R 1N :
i f (CassandraDB . EKeys ( e2 .Key , Rcol , e2 . Value . ToString ( ) ) . Any ( ) )

throw new Inva l idOperat ionExcept ion (
”Re lat ion type c on s t r a i n t v i o l a t i o n ” ) ;

break ;
case RelationType .R NM:

i f (R. AsColumnFamily ( ) . Get ( id . ToString ( ) ) . CountColumns ( ) != 0)
throw new Inva l idOperat ionExcept ion (

”Re lat ion type c on s t r a i n t v i o l a t i o n ” ) ;
break ;

default :
break ;

}

var r e l a t i o n = R. AsColumnFamily ( ) . CreateRecord ( id . ToString ( ) ) ;
foreach ( var e in R. En t i t i e s )
{

var eId = id s . ContainsKey ( e ) ? i d s [ e ] . ToString ( ) : string . Empty ;
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i f ( string . IsNullOrEmpty ( eId ) )
throw new ArgumentException (

” i d s : e n t i t y not found in r e l a t i o n metadata” ) ;

var eDoc = getE ( e ) . AsColumnFamily ( ) . Get ( eId . ToString ( ) ) . F i r s t ( ) ;
i f ( eDoc . Columns . Count == 0)

throw new Inva l idOperat ionExcept ion ( string . Format (
”Entity {0} with key {1} not found . ” , e , eId ) ) ;

r e l a t i o n [ e + ” i d ” ] = eDoc .Key ;
foreach ( var a t t r in eDoc . Columns )
{

r e l a t i o n [ e + ” ” + a t t r . ColumnName ] = a t t r . ColumnValue ;
}

CassandraDB .AddToEKeys( e , Rcol , eId , id . ToString ( ) ) ;
}

r e l a t i o n [ ” i d x a l l ” ] = 0 ;

CassandraDB .DB. Attach ( r e l a t i o n ) ;
CassandraDB .DB. SaveChanges ( ) ;

return r e l a t i o n ;
}

/// <summary>
/// Dele te (R) :
///
/// r = f i n d (R)
/// t r a n s f e r
/// updateIndex (IX R)
/// d e l e t e ( r )
///
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <returns>Operation r e s u l t : true</returns>
public override object Dele t eRe la t i on ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var id = DB. GetRelId ( Rcol , i d s ) ;
getR ( Rcol ) . AsColumnFamily ( ) . RemoveKey( id . ToString ( ) ) ;

foreach ( var E in i d s )
CassandraDB .RemoveFromEKeys(E.Key , Rcol , E . Value . ToString ( ) ,

id . ToString ( ) ) ;

return true ;
}

/// <summary>
/// Update (R) :
///
/// f i n d (R)
/// updateIndex (IX R)
/// update (R)
/// t r a n s f e r
/// </summary>
/// <param name=”Rcol”>Rela t ion name</param>
/// <param name=”i d s”>Rela t ion r e l a t e d e n t i t i e s keys</param>
/// <param name=”toUpdate”>Rela t ion a t t r i b u t e s to update</param>
/// <returns>Operation r e s u l t : true</returns>
public override object UpdateRelation ( string Rcol ,

IDic t ionary<string , object> ids , IDic t ionary<string , object> toUpdate )
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{
var id = DB. GetRelId ( Rcol , i d s ) ;

var r e c = getR ( Rcol ) . AsColumnFamily ( ) . Get ( id . ToString ( ) ) . F i r s t ( ) ;
i f ( r e c . Columns . Count == 0)

return fa l se ;

var toU = toUpdate .Where ( a => ! a . Key . EndsWith ( ” i d ” ) ) ;
i f ( toU . Count ( ) == 0)

return true ;

update ( rec , toU ) ;

CassandraDB .DB. Attach ( r ec ) ;
CassandraDB .DB. SaveChanges ( ) ;

return true ;
}

#endreg ion

#reg i on Read

/// <summary>
/// Read(A) : f i n d by key
///
/// f i n d (A, Aid )
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e e n t i t y ( a u t o r e l a t i o n )</ returns>
public override IRe l a t i on ReadEntity ( string co l , object id )
{

var doc = getE ( co l ) . AsColumnFamily ( ) . Get ( id . ToString ( ) ) . F i r s t ( ) ;
i f ( doc . Columns . Count == 0) return new MaxR( ) ;
var maxr = new MaxR( co l ) ;
var p r e f i x = string . Empty ;
i f ( !DB. Re la t i on s . ContainsKey ( c o l ) ) p r e f i x = co l + ” ” ;
maxr .Add( doc .ToRow( p r e f i x ) ) ;
return maxr ;

}

/// <summary>
/// Read(R) : f i n d by key
///
/// f i n d (R, Rids )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>
/// <returns>MaxR conta in ing the s i n g l e r e l a t i o n </returns>
public override IRe l a t i on ReadRelation ( string Rcol ,

IDic t ionary<string , object> i d s )
{

var R = getR ( Rcol ) ;
var ent i tyKeys = new Dict ionary<string , object >() ;
var r e l = R. AsColumnFamily ( ) . Get (DB. GetRelId ( Rcol , i d s ) . ToString ( ) ) . F i r s t ( ) ;
i f ( r e l . Columns . Count == 0) return null ;
foreach ( var ename in R. En t i t i e s )
{

var id = id s . ContainsKey ( ename ) ? i d s [ ename ] . ToString ( ) : string . Empty ;
ent i tyKeys .Add(ename , id ) ;

}
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return new MaxR(R. En t i t i e s ) {
Rows = new List<IRelationRow> {

new MaxRRow { Att r ibute s = r e l .ToRow( ) , Keys = ent i tyKeys }
}

} ;
}

/// <summary>
/// Read(A) : query
///
/// s e l e c t (A, p )
/// t r a n s f e r
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”query”>Read pred ica te </param>
/// <returns>MaxR conta in ing the e n t i t i e s </returns>
public override IRe l a t i on LoadEnt i t i e s ( string co l , IQuery query = null )
{

var maxr = new MaxR( co l ) ;
var E = getE ( co l ) ;

IEnumerable Es ;

i f ( query == null )
Es = E. ExecuteCassandraQuery ( FixedQuery . Al l ( c o l ) , CassandraDB ) ;

else
Es = E. ExecuteCassandraQuery ( query , CassandraDB ) ;

i f (Es i s IEnumerable<ICqlRow>)
{

foreach ( var e in (Es as IEnumerable<ICqlRow>))
{

maxr .Add( e .ToRow(E.Name + ” ” ) ) ;
}

}
else
{

foreach ( var e in (Es as IEnumerable<FluentColumnFamily>))
{

maxr .Add( e .ToRow(E.Name + ” ” ) ) ;
}

}
return maxr ;

}

/// <summary>
/// Read(R) : query
///
/// rA = s e l e c t (A, p )
/// t r a n s f e r
/// s e l e c t (R, R. Aid IN rA . id )
/// t r a n s f e r
/// foreach ( var X in ({R}−A)) {
/// i d s = d i s t i n c t (kR)
/// foreach ( id in i d s ) {
/// f i n d (X, id )
/// }
/// t r a n s f e r
/// }
/// j o i n ()
///
/// </summary>
/// <param name=”c o l”>Ent i ty name</param>
/// <param name=”id”>Ent i ty key</param>

196



APPENDIX A. EVALUATION FRAMEWORK CODE FRAGMENTS

/// <returns>MaxR conta in ing the r e l a t i o n s </returns>
public override IRe l a t i on LoadRelat ions ( string Rcol , IQuery query = null )
{

IEnumerable<object> Rs ;

var R = getR ( Rcol ) ;
i f ( query == null )

Rs = R. ExecuteCassandraMaxRQuery ( FixedQuery . Al l ( Rcol ) , CassandraDB ) ;
else

Rs = R. ExecuteCassandraMaxRQuery ( query , CassandraDB ) ;

var r e l a t i o n s = new List<IRelationRow >() ;
foreach ( var r e l in Rs . ToCassandraRow ( ) )
{

var ents = R. En t i t i e s .
ToDictionary ( e => e , e => r e l [ e + ” i d ” ] . GetValue ( ) ) ;

r e l a t i o n s .Add(new MaxRRow {
Att r ibute s = r e l .ToRow( ) , Keys = ents

} ) ;
}
return new MaxR(R. En t i t i e s ) { Rows = r e l a t i o n s } ;

}

#endreg ion

#reg i on p r i v a t e s

private stat ic void update ( FluentColumnFamily rec ,
IEnumerable<KeyValuePair<string , object>> toUpdate )

{
foreach ( var a t t r in toUpdate )

r e c [ a t t r . Key ] = a t t r . Value . ToString ( ) ;
}

#endreg ion
}

197



A.4. APACHE CASSANDRA IMPLEMENTATION

198



Bibliography

[1] 10gen. Csharp language center, mongodb c# / .net driver.
http://docs.mongodb.org/ecosystem/drivers/csharp/. Last ac-
cess: 19/03/2013.

[2] 10gen. Database references. http://docs.mongodb.org/manual/

applications/database-references/. Last access: 19/03/2013.

[3] 10gen. Master detail transactions in mongodb. http://blog.mongodb.
org/post/7494240825/master-detail-transactions-in-mongodb.
Last access: 08/11/2012.

[4] 10gen. mongodb. http://www.mongodb.org/. Last access: 08/11/2012.

[5] 10gen. Perform two phase commits. http://docs.mongodb.

org/manual/tutorial/perform-two-phase-commits/. Last access:
08/11/2012.

[6] 10gen. Replica set fundamental concepts. http://docs.mongodb.org/
manual/core/replication/. Last access: 19/03/2013.

[7] Amazon Elastic MapReduce Adam Gray, Product Man-
ager. Aws howto: Using amazon elastic mapreduce with dy-
namodb (guest post). http://aws.typepad.com/aws/2012/01/

aws-howto-using-amazon-elastic-mapreduce-with-dynamodb.

html. Last access: 04/11/2012.

[8] Amazon. Amazon dynamodb faqs. http://aws.amazon.com/

dynamodb/faqs. Last access: 02/11/2012.

[9] Ed Anuff. Indexing in cassandra. http://anuff.com/2011/02/

indexing-in-cassandra/. Last access: 19/03/2013.

[10] Ed Anuff. Secondary indexes in cassandra. http://anuff.com/2010/

07/secondary-indexes-in-cassandra/. Last access: 19/03/2013.

199

http://docs.mongodb.org/ecosystem/drivers/csharp/
http://docs.mongodb.org/manual/applications/database-references/
http://docs.mongodb.org/manual/applications/database-references/
http://blog.mongodb.org/post/7494240825/master-detail-transactions-in-mongodb
http://blog.mongodb.org/post/7494240825/master-detail-transactions-in-mongodb
http://www.mongodb.org/
http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://docs.mongodb.org/manual/core/replication/
http://docs.mongodb.org/manual/core/replication/
http://aws.typepad.com/aws/2012/01/aws-howto-using-amazon-elastic-mapreduce-with-dynamodb.html
http://aws.typepad.com/aws/2012/01/aws-howto-using-amazon-elastic-mapreduce-with-dynamodb.html
http://aws.typepad.com/aws/2012/01/aws-howto-using-amazon-elastic-mapreduce-with-dynamodb.html
http://aws.amazon.com/dynamodb/faqs
http://aws.amazon.com/dynamodb/faqs
http://anuff.com/2011/02/indexing-in-cassandra/
http://anuff.com/2011/02/indexing-in-cassandra/
http://anuff.com/2010/07/secondary-indexes-in-cassandra/
http://anuff.com/2010/07/secondary-indexes-in-cassandra/


BIBLIOGRAPHY

[11] Apache. Apache cassandra project. http://cassandra.apache.org/.
Last access: 19/03/2013.

[12] Apache. Cassandra wiki, high level clients. http://wiki.apache.org/
cassandra/ClientOptions. Last access: 19/03/2013.

[13] Apache. Extension methods (c# programming guide). http://msdn.

microsoft.com/en-us/library/vstudio/bb383977.aspx. Last ac-
cess: 01/04/2013.

[14] Apache. Welcome to apache hadoop! http://hadoop.apache.org/.
Last access: 10/02/2013.

[15] Eric A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing, PODC ’00, pages 7–, New York, NY, USA, 2000.
ACM.

[16] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec.,
39(4):12–27, May 2011.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[18] Ming-Syan Chen and P.S. Yu. Combining joint and semi-join opera-
tions for distributed query processing. Knowledge and Data Engineering,
IEEE Transactions on, 5(3):534–542, 1993.

[19] Cloudant. Bigcouch, a highly available, fault-tolerant, clustered version
of apache couchdb. http://bigcouch.cloudant.com/. Last access:
08/12/2012.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[21] Couchbase. Couchbase server, the nosql document database. http:

//www.couchbase.com/couchbase-server/overview. Last access:
08/12/2012.

[22] Couchbase. Replace your memcached tier with a couchbase cluster.
http://www.couchbase.com/memcached. Last access: 08/11/2012.

200

http://cassandra.apache.org/
http://wiki.apache.org/cassandra/ClientOptions
http://wiki.apache.org/cassandra/ClientOptions
http://msdn.microsoft.com/en-us/library/vstudio/bb383977.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb383977.aspx
http://hadoop.apache.org/
http://bigcouch.cloudant.com/
http://www.couchbase.com/couchbase-server/overview
http://www.couchbase.com/couchbase-server/overview
http://www.couchbase.com/memcached


BIBLIOGRAPHY

[23] Couchbase. Why nosql ? http://www.couchbase.com/why-nosql/

nosql-database. Last access: 08/12/2012.

[24] DataStax. Datastax community edition of apache cassandra. http:

//www.datastax.com/products/community. Last access: 19/03/2013.

[25] DataStax. Secondary indexes, apache cassandra 0.7 documenta-
tion. http://www.datastax.com/docs/0.7/data_model/secondary_

indexes. Last access: 19/03/2013.

[26] DataStax. Using column families as indexes, apache cassandra 0.7 doc-
umentation. http://www.datastax.com/docs/0.7/data_model/cfs_

as_indexes#indexes. Last access: 19/03/2013.

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, Oc-
tober 2007.

[29] Brad et al. Fitzpatrick. Memcached. http://memcached.org/, April
2010. Last access: 02/11/2012.

[30] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

[31] Neo Technology Inc. Neo4j, the world’s leading graph database. http:

//www.neo4j.org/. Last access: 10/11/2012.

[32] David Intersimone. The end of sql and relational databases
? http://blogs.computerworld.com/15510/the_end_of_

sql_and_relational_databases_part-_1_of_3,http://blogs.

computerworld.com/15556/the_end_of_sql_and_relational_

databases_part_2_of_3,http://blogs.computerworld.com/15641/

the_end_of_sql_and_relational_databases_part_3_of_3, Febru-
ary 2010.

[33] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, and Rina Panigrahy Abstract. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the world

201

http://www.couchbase.com/why-nosql/nosql-database
http://www.couchbase.com/why-nosql/nosql-database
http://www.datastax.com/products/community
http://www.datastax.com/products/community
http://www.datastax.com/docs/0.7/data_model/secondary_indexes
http://www.datastax.com/docs/0.7/data_model/secondary_indexes
http://www.datastax.com/docs/0.7/data_model/cfs_as_indexes#indexes
http://www.datastax.com/docs/0.7/data_model/cfs_as_indexes#indexes
http://memcached.org/
http://www.neo4j.org/
http://www.neo4j.org/
http://blogs.computerworld.com/15510/the_end_of_sql_and_relational_databases_part- _1_of_3, http://blogs.computerworld.com/15556/the_end_of_sql_and_relational_databases_ part_2_of_3, http://blogs.computerworld.com/15641/the_end_of_sql_and_relational_ databases_part_3_of_3
http://blogs.computerworld.com/15510/the_end_of_sql_and_relational_databases_part- _1_of_3, http://blogs.computerworld.com/15556/the_end_of_sql_and_relational_databases_ part_2_of_3, http://blogs.computerworld.com/15641/the_end_of_sql_and_relational_ databases_part_3_of_3
http://blogs.computerworld.com/15510/the_end_of_sql_and_relational_databases_part- _1_of_3, http://blogs.computerworld.com/15556/the_end_of_sql_and_relational_databases_ part_2_of_3, http://blogs.computerworld.com/15641/the_end_of_sql_and_relational_ databases_part_3_of_3
http://blogs.computerworld.com/15510/the_end_of_sql_and_relational_databases_part- _1_of_3, http://blogs.computerworld.com/15556/the_end_of_sql_and_relational_databases_ part_2_of_3, http://blogs.computerworld.com/15641/the_end_of_sql_and_relational_ databases_part_3_of_3
http://blogs.computerworld.com/15510/the_end_of_sql_and_relational_databases_part- _1_of_3, http://blogs.computerworld.com/15556/the_end_of_sql_and_relational_databases_ part_2_of_3, http://blogs.computerworld.com/15641/the_end_of_sql_and_relational_ databases_part_3_of_3


BIBLIOGRAPHY

wide web. In In Proc. 29th ACM Symposium on Theory of Computing
(STOC, pages 654–663, 1997.

[34] Jay et al. Kreps. Project voldemort - a distributed database. http:

//www.project-voldemort.com/, 2010.

[35] Jay et al. Kreps. Project voldemort - design. http://www.

project-voldemort.com/voldemort/design.html, 2010.

[36] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[37] managedfusion. Fluentcassandra. https://groups.google.com/

forum/#!forum/fluentcassandra. Last access: 19/03/2013.

[38] Ken North. Databases in the cloud. Dr. Drobbs Magazine, September
2009.

[39] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[40] Hibernating Rhinos. Ravendb, open source 2nd generation document
db. http://ravendb.net/. Last access: 10/11/2012.

[41] Salvatore et al. Sanfilippo. Redis. http://code.google.com/p/redis/,
2010. Last access: 02/11/2012.

[42] Scalaris. Scalaris, a distributed transactional key-value store. http:

//code.google.com/p/scalaris/. Last access: 02/11/2012.

[43] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Comput. Surv., 22(4):299–319, De-
cember 1990.

[44] Stephen Yen. Nosql is a horseless carriage. http://dl.getdropbox.

com/u/2075876/nosql-steve-yen.pdf, November 2009. Last access:
02/11/2012.

202

http://www.project-voldemort.com/
http://www.project-voldemort.com/
http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
https://groups.google.com/forum/#!forum/fluentcassandra
https://groups.google.com/forum/#!forum/fluentcassandra
http://ravendb.net/
http://code.google.com/p/redis/
http://code.google.com/p/scalaris/
http://code.google.com/p/scalaris/
http://dl.getdropbox.com/u/2075876/nosql-steve-yen.pdf
http://dl.getdropbox.com/u/2075876/nosql-steve-yen.pdf

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	State of the Art
	Introduction
	Why NoSQL
	Classification dimensions for NoSQL
	Categories of NoSQL from the data model perspective
	Main Elements Characterizing NoSQL

	Classification of NoSQL
	Key-Value Databases
	Document-Based Databases
	Column-Oriented Databases
	Graph-based Database

	The Lack of Relation Concept
	Summary

	Controlling Serialization of Data in NoSQL Databases
	Definition of the Problem
	Common NoSQL Relationship Serialization Techniques
	Marijà: A Framework for Data Distribution
	Summary

	Single Node Logical Models: MinR and MaxR
	Single Node Logical Models: MinR and MaxR
	Minimal Replication (MinR)
	Maximal Replication (MaxR)
	Common Schema between Models

	Comparing MinR and MaxR Models
	Finding a Complete Method to Compare Models
	Assumptions and Notations

	Comparing Create Operator
	Comparing Update Operator
	Comparing Delete Operator
	Comparing Read Operator
	Using Relational Algebra to Ensure Completeness of Read Comparison

	Criteria for Model Selection
	Consistency and Other Considerations
	Summary

	Executing Tests on Models
	Testing Objectives and Context
	Logging methods
	Experimental Settings
	Hardware and Software Settings
	Database Schema used for Testing

	Preliminary Tests
	Detailed Tests Presentation Schema
	Testing Select Relation Operator (selectR)
	Test 1: #E vs #R
	Test 2: Ereplica Impact

	Testing Update Entity Operator (updateE)
	Test 1: #R grows
	Test 2: #Replica grows

	Summary

	Design of Evaluation Framework and its Implementation
	Introduction
	Evaluation Framework Architecture
	Abstract Model of Marijà Single Node
	Tests Implementation
	Providers Implementation
	MongoDB Implementation
	Apache Cassandra Implementation

	Summary

	Discussion and Future Work
	Summary of Work Done
	Discussion
	Future Work

	Appendices
	Evaluation Framework Code Fragments
	Introduction
	Marijà Worker Interfaces
	MongoDB Implementation
	Apache Cassandra Implementation

	Bibliography

